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Tutorial overview: part 1
• Optimization for boosting Machine Learning: few details
• Machine Learning for boosting optimization: an overview

ü Supporting the modeling activity:
• Machine Learning to detect constraints (e.g. Constraint Acquisition, Model Seeker)
• Machine Learning models as constraints (e.g. Empirical Model Learning, partially dened constraints)
• Objective function learning 

üBoosting Search
• No good learning and recording
• Reinforcement learning for search
• Approximating branching heuristics

üAlgorithm selection and tuning
• Using ML to predict the run time
• Using ML to select the best approach

ü Similar approaches
• Surrogate based optimization
• Black box optimization
• LION (Learning and Intelligent OptimizatioN) approach, metaheuristics
• Model predictive control

• Concluding remarks and future research directions



Tutorial overview: part 2

• Hands on session (about Empirical Model Learning)
ü Overview of the target problem (Off-line/on-line optimization)
üOverview of the tools
ü Sampling the on-line input space to build a training set
üApproximating the on-line behavior via ML
üEmbedding the ML model in a combinatorial model
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Machine learning and optimization

• A lot of research activity going on in two directions:

• Helping ML algorithms through optimization techniques

• Boosting optimization via ML
• this is what this tutorial is about



Improving ML algorithms via optimization

• Pattern mining:
• Optimization methods such as SAT/CP/ILP enable to express complex 

constraints on patterns and combination thereof

• Itemset mining and extensions (cost constraints, 
closed itemset, max itemset) 

L. De Raedt, T. Guns, S. Nijssen. Constraint programming for itemset mining. KDD 2008

S. Nijssen, T. Guns. Integrating constraint programming and itemset mining. ECML PKDD 2010.

M. Maamar, N. Lazaar, S. Loudni, Y. Lebbah. A global constraint for closed itemset mining. CP 2016.

P. Schaus, J. Aoga, T. Guns. CoverSize: A global constraint for frequence-based itemset mining. CP 2017.

I.O. Dlala, S. Jabbour, L. Sais, B.B. Yaghlane. A Comparative Study of SAT-Based Itemsets Mining SGAI 2016.



Improving ML algorithms via optimization

• Pattern mining:
• Optimization methods such as SAT/CP/ILP enable to express complex 

constraints on patterns and combination thereof

• Sequence mining with constraints on syntax, data 
covered, relationship

Aoga, John OR, Tias Guns, and Pierre Schaus. "An efficient algorithm for mining frequent sequence with 
constraint programming.”  ECMLPKDD 2016

Kemmar , Y. Lebbah, S. Loudni, P. Boizumault, and T. Charnois. "Prefix-projection global constraint and top-
k approach for sequential pattern mining." Constraints 22, no. 2 (2017)

M. Gebser, T. Guyet, R.Quiniou, J.Romero, and T.Schaub. "Knowledge-based sequence mining with ASP." 
In IJCAI 2016



Improving ML algorithms via optimization

• Pattern mining:
• Optimization methods such as SAT/CP/ILP enable to express complex 

constraints on patterns and combination thereof

• Pattern set mining 

A. Ouali, A. Zimmermann, S. Loudni, Y. Lebbah1 , B. Cremilleux, P. Boiiumault, L. Loukil. Integer Linear 
Programming for Patern Set Mining; with an Applicaton to Tiling. PAKDD 2017. 

L. De Raedt, S. Nijssen, T. Guns. k-Pattern Set Mining under Constraints. IEEE TKDE, 2013. 



Improving ML algorithms via optimization

• Clustering:

Berg, Jeremias, and Matti Jarvisalo. "Optmal correlaton clustering via MaxSAT , AIJ Journal 2017 

Ouali, A., Loudni, S., Lebbah, Y., Boiiumault, P., Zimmermann, A., and Loukil, L. Efficiently finding conceptual 
clustering models with integer linear programming. IJCAI’16 

Bich Duong, Khanh-Chuong, and Christel Vrain. "A declaratve framework for constrained
clustering”. ECML, 2013. and AIJ 2017

Mueller, Marianne, and Stefan Kramer. "Integer Linear Programming Models for
Constrained Clustering." Discovery science 2010. Vol. 6332. 2010.



Boosting optimization via ML

• Supporting the modeling activity:
• Machine Learning is used to learn problem model components:

• Constraints
• Objective function

• Boosting Search/Solving
• Machine Learning is used to speed up search:

• Variable/value selection heuristics
• New search strategies
• Enabling specific algorithms during search

• Algorithm selection and tuning
• Machine learning is used to select the best algorithm in a portfolio
• Machine learning is used for parameter tuning



ML for supporting the 
modeling activity

M. Lombardi, M. Milano, Boosting Combinatorial Problem Modeling with Machine 
Learning, IJCAI2018 



Supporting the modeling activity

• Use implicit information from a set of examples to obtain 
part of a combinatorial model
– a constraint 
– an objective function.

• There are three main approaches:
– extracting information using the native constraint language  of 

the solver; 
– embedding a fully-fledged Machine Learning model  in a 

combinatorial approach. 
– extreme case, the ML model makes up (almost) all of the 

combinatorial model.



• Traditionally, combinatorial optimization problems are 
models from iterative interactions between a domain and 
an optimization expert. 

• ML could replace (or support) 
– the optimization expert with a constraint acquisition algorithm,
– the domain expert with an example generator.

• We need data:
– Either historical data
– Data from the expert 
– Data extracted from the real system or a simulator

Supporting the modeling activity



• where     are problem variables,        their domain and x0 is 
the variable representing the objective value,           are 
problem constraints (predicates)

• Notably the predicates are defined using the 
building blocks from the hosting approach

Learning native constraint language
components

optimization, portfolio selection and algorithm configuration.
Due to space limitations, we do not discuss the (many and
interesting) techniques that explore the other direction of in-
tegration (i.e. optimization techniques to improve ML algo-
rithms). Concluding remarks are provided in Section 7.

2 Learning Model Components

In this section we consider approaches that use implicit infor-
mation from a set of examples to obtain part of a combinato-
rial model, in particular a constraint or an objective function.
There are two main approaches to achieve this result: the first
(covered in Section 2.1) aims at extracting information using
the native constraint language of the solver; the second (in
Section 2.2) consists in embedding a fully-fledged Machine
Learning model in a combinatorial approach. As an extreme
case, in Section 2.3 we consider approaches where the ML
model makes up (almost) all of the combinatorial model.

2.1 Learning via a Native Constraint Language

Traditionally, combinatorial optimization models are born
from iterative interactions between a domain and an optimiza-
tion expert. Intuitively, ML could support modeling activities
by retaining the same process, but replacing the optimization
expert with a constraint acquisition algorithm, and the do-
main expert with an example generator. Formally, the ap-
proaches in this section aim at learning a model in the form:

min z = x0 (P1)

subject to: ⇡i(~x) 8i 2 I

~x 2 D~x

were ~x is the vector of problem variables and D~x their do-
main. The set I contains the indices of all problem con-
straints, represented here as predicates ⇡i(~x) that must hold in
any feasible solution. The x0 variable represents by conven-
tion the cost to be minimized, and is absent in pure constraint
satisfaction problems. Crucially, the predicates are defined
using the building blocks from the hosting approach (e.g.
global constraints in Constraint Programming, linear equal-
ities or inequalities in Mixed Integer Linear Programming):
what changes is just the way they are discovered.

The example generator may be a human, a collection of
data, or an existing automated system. In latter case, con-
straint acquisition can also be considered as a mean to ex-
plain in declarative terms the behavior of a procedural or sub-
symbolic decision support system. All approaches in this sec-
tion focus on learning constraints, rather than objective func-
tions: of course nothing prevents a constraint from represent-
ing the definition of the x0 variable (as done in P1).

This is the idea behind systems such as CONACQ [Bessiere
et al., 2017a] (in its various versions), QUACQ [Bessiere et
al., 2013], and model seeker [Beldiceanu and Simonis, 2012],
which build over the Constraint Programming paradigm, and
behind the method in [Lallouet et al., 2010], based on Induc-
tive Logic Programming. Both CONACQ and QUACQ oper-
ate by picking constraints from a set of potential (instanti-
ated) candidates (called a bias) and adding them to a target
constraint network. Model seeker attempts to match (possi-
bly) transformed subsets of variables in the training examples

against a collection of (non-instantiated) global constraints;
constraints that are compatible with all examples are added
to the current model, and a series of simplification steps at-
tempts to remove redundant relations. Since model seeker re-
lies does not need to consider explicitly all possible instantia-
tions in its candidate pool, it can usually deal with a large va-
riety of constraints. The downside is that finding a matching
becomes more complicated and requires the use of a heuristic
step. The method from [Lallouet et al., 2010] attempts in-
stead to learn local rules that are partially independent on the
specific values and variables appearing in the examples.

A first major design choice in all such approaches concerns
the use of passive or active learning. Methods based on pas-
sive learning (e.g. Model seeker, the original CONACQ, and
the one from [Lallouet et al., 2010]) operate on a fixed collec-
tion of examples. Conversely, approaches based active learn-
ing (e.g. QUACQ and CONACQ.2) generate candidate exam-
ples themselves and query the generator (which in this case is
instead a constraint checker) for their validity. Active learn-
ing enables convergence using a smaller number of examples,
but is not applicable when a constraint checker is not avail-
able (e.g. when working on collections of historical data).

Among the mentioned approaches, only model seeker can
work using just positive examples, which makes it well suited
to deal with historical data. The system can also be used to
obtain, based on a handful of examples, a candidate list of
global constraints for modeling the problem. CONACQ and
QUACQ employ both positive and negative examples (which
may be a disadvantage), but are capable of using negative ex-
amples to quickly rule out large sets of constraints from the
bias (which is a considerable advantage). QUACQ has the pe-
culiarity of relying on partial examples, where only some of
the problem variables are instantiated. This allows to speed
up convergence both from a theoretical and practical perspec-
tive, giving the algorithm its namesake (QUick ACQuisition).

Finally, the method from [Lallouet et al., 2010] learns a
model using an intermediate representation; this is loosely in-
spired by modeling languages such as AMPL, OPL or MiniZ-
inc, which make a clear distinction between the problem
structure and its parameters. Thanks to this design choice, the
approach is able to learn parameter-free models, and to gen-
eralize results obtained on smaller instances to larger ones.
The price to pay for this impressive feat is a more complex
formalism and a somewhat reduced expressivity.

2.2 Incorporating Machine Learning Models

Unlike the approaches described in Section 2.1, the methods
considered here attempt to incorporate a fully-fledged Ma-
chine Learning model within a combinatorial optimization
model. Formally, these works deal with problems in the form:

min z = x0 (P2)

subject to: ⇡i(~x) 8i 2 I

⌫m(~xm,in, ~xm,out) 8m 2 M

~x 2 D~x

where the ⇡i(~x) predicates represent constraints obtained in
a traditional fashion, while each ⌫m(~xm,in, ~xm,out) is a pred-
icate that: 1) corresponds to a Machine Learning model m

Aimed at learning models in the general form: 

optimization, portfolio selection and algorithm configuration.
Due to space limitations, we do not discuss the (many and
interesting) techniques that explore the other direction of in-
tegration (i.e. optimization techniques to improve ML algo-
rithms). Concluding remarks are provided in Section 7.

2 Learning Model Components

In this section we consider approaches that use implicit infor-
mation from a set of examples to obtain part of a combinato-
rial model, in particular a constraint or an objective function.
There are two main approaches to achieve this result: the first
(covered in Section 2.1) aims at extracting information using
the native constraint language of the solver; the second (in
Section 2.2) consists in embedding a fully-fledged Machine
Learning model in a combinatorial approach. As an extreme
case, in Section 2.3 we consider approaches where the ML
model makes up (almost) all of the combinatorial model.

2.1 Learning via a Native Constraint Language

Traditionally, combinatorial optimization models are born
from iterative interactions between a domain and an optimiza-
tion expert. Intuitively, ML could support modeling activities
by retaining the same process, but replacing the optimization
expert with a constraint acquisition algorithm, and the do-
main expert with an example generator. Formally, the ap-
proaches in this section aim at learning a model in the form:

min z = x0 (P1)

subject to: ⇡i(~x) 8i 2 I

~x 2 D~x

were ~x is the vector of problem variables and D~x their do-
main. The set I contains the indices of all problem con-
straints, represented here as predicates ⇡i(~x) that must hold in
any feasible solution. The x0 variable represents by conven-
tion the cost to be minimized, and is absent in pure constraint
satisfaction problems. Crucially, the predicates are defined
using the building blocks from the hosting approach (e.g.
global constraints in Constraint Programming, linear equal-
ities or inequalities in Mixed Integer Linear Programming):
what changes is just the way they are discovered.

The example generator may be a human, a collection of
data, or an existing automated system. In latter case, con-
straint acquisition can also be considered as a mean to ex-
plain in declarative terms the behavior of a procedural or sub-
symbolic decision support system. All approaches in this sec-
tion focus on learning constraints, rather than objective func-
tions: of course nothing prevents a constraint from represent-
ing the definition of the x0 variable (as done in P1).

This is the idea behind systems such as CONACQ [Bessiere
et al., 2017a] (in its various versions), QUACQ [Bessiere et
al., 2013], and model seeker [Beldiceanu and Simonis, 2012],
which build over the Constraint Programming paradigm, and
behind the method in [Lallouet et al., 2010], based on Induc-
tive Logic Programming. Both CONACQ and QUACQ oper-
ate by picking constraints from a set of potential (instanti-
ated) candidates (called a bias) and adding them to a target
constraint network. Model seeker attempts to match (possi-
bly) transformed subsets of variables in the training examples

against a collection of (non-instantiated) global constraints;
constraints that are compatible with all examples are added
to the current model, and a series of simplification steps at-
tempts to remove redundant relations. Since model seeker re-
lies does not need to consider explicitly all possible instantia-
tions in its candidate pool, it can usually deal with a large va-
riety of constraints. The downside is that finding a matching
becomes more complicated and requires the use of a heuristic
step. The method from [Lallouet et al., 2010] attempts in-
stead to learn local rules that are partially independent on the
specific values and variables appearing in the examples.

A first major design choice in all such approaches concerns
the use of passive or active learning. Methods based on pas-
sive learning (e.g. Model seeker, the original CONACQ, and
the one from [Lallouet et al., 2010]) operate on a fixed collec-
tion of examples. Conversely, approaches based active learn-
ing (e.g. QUACQ and CONACQ.2) generate candidate exam-
ples themselves and query the generator (which in this case is
instead a constraint checker) for their validity. Active learn-
ing enables convergence using a smaller number of examples,
but is not applicable when a constraint checker is not avail-
able (e.g. when working on collections of historical data).

Among the mentioned approaches, only model seeker can
work using just positive examples, which makes it well suited
to deal with historical data. The system can also be used to
obtain, based on a handful of examples, a candidate list of
global constraints for modeling the problem. CONACQ and
QUACQ employ both positive and negative examples (which
may be a disadvantage), but are capable of using negative ex-
amples to quickly rule out large sets of constraints from the
bias (which is a considerable advantage). QUACQ has the pe-
culiarity of relying on partial examples, where only some of
the problem variables are instantiated. This allows to speed
up convergence both from a theoretical and practical perspec-
tive, giving the algorithm its namesake (QUick ACQuisition).

Finally, the method from [Lallouet et al., 2010] learns a
model using an intermediate representation; this is loosely in-
spired by modeling languages such as AMPL, OPL or MiniZ-
inc, which make a clear distinction between the problem
structure and its parameters. Thanks to this design choice, the
approach is able to learn parameter-free models, and to gen-
eralize results obtained on smaller instances to larger ones.
The price to pay for this impressive feat is a more complex
formalism and a somewhat reduced expressivity.

2.2 Incorporating Machine Learning Models

Unlike the approaches described in Section 2.1, the methods
considered here attempt to incorporate a fully-fledged Ma-
chine Learning model within a combinatorial optimization
model. Formally, these works deal with problems in the form:

min z = x0 (P2)

subject to: ⇡i(~x) 8i 2 I

⌫m(~xm,in, ~xm,out) 8m 2 M

~x 2 D~x

where the ⇡i(~x) predicates represent constraints obtained in
a traditional fashion, while each ⌫m(~xm,in, ~xm,out) is a pred-
icate that: 1) corresponds to a Machine Learning model m

optimization, portfolio selection and algorithm configuration.
Due to space limitations, we do not discuss the (many and
interesting) techniques that explore the other direction of in-
tegration (i.e. optimization techniques to improve ML algo-
rithms). Concluding remarks are provided in Section 7.

2 Learning Model Components

In this section we consider approaches that use implicit infor-
mation from a set of examples to obtain part of a combinato-
rial model, in particular a constraint or an objective function.
There are two main approaches to achieve this result: the first
(covered in Section 2.1) aims at extracting information using
the native constraint language of the solver; the second (in
Section 2.2) consists in embedding a fully-fledged Machine
Learning model in a combinatorial approach. As an extreme
case, in Section 2.3 we consider approaches where the ML
model makes up (almost) all of the combinatorial model.

2.1 Learning via a Native Constraint Language

Traditionally, combinatorial optimization models are born
from iterative interactions between a domain and an optimiza-
tion expert. Intuitively, ML could support modeling activities
by retaining the same process, but replacing the optimization
expert with a constraint acquisition algorithm, and the do-
main expert with an example generator. Formally, the ap-
proaches in this section aim at learning a model in the form:

min z = x0 (P1)

subject to: ⇡i(~x) 8i 2 I

~x 2 D~x

were ~x is the vector of problem variables and D~x their do-
main. The set I contains the indices of all problem con-
straints, represented here as predicates ⇡i(~x) that must hold in
any feasible solution. The x0 variable represents by conven-
tion the cost to be minimized, and is absent in pure constraint
satisfaction problems. Crucially, the predicates are defined
using the building blocks from the hosting approach (e.g.
global constraints in Constraint Programming, linear equal-
ities or inequalities in Mixed Integer Linear Programming):
what changes is just the way they are discovered.

The example generator may be a human, a collection of
data, or an existing automated system. In latter case, con-
straint acquisition can also be considered as a mean to ex-
plain in declarative terms the behavior of a procedural or sub-
symbolic decision support system. All approaches in this sec-
tion focus on learning constraints, rather than objective func-
tions: of course nothing prevents a constraint from represent-
ing the definition of the x0 variable (as done in P1).

This is the idea behind systems such as CONACQ [Bessiere
et al., 2017a] (in its various versions), QUACQ [Bessiere et
al., 2013], and model seeker [Beldiceanu and Simonis, 2012],
which build over the Constraint Programming paradigm, and
behind the method in [Lallouet et al., 2010], based on Induc-
tive Logic Programming. Both CONACQ and QUACQ oper-
ate by picking constraints from a set of potential (instanti-
ated) candidates (called a bias) and adding them to a target
constraint network. Model seeker attempts to match (possi-
bly) transformed subsets of variables in the training examples

against a collection of (non-instantiated) global constraints;
constraints that are compatible with all examples are added
to the current model, and a series of simplification steps at-
tempts to remove redundant relations. Since model seeker re-
lies does not need to consider explicitly all possible instantia-
tions in its candidate pool, it can usually deal with a large va-
riety of constraints. The downside is that finding a matching
becomes more complicated and requires the use of a heuristic
step. The method from [Lallouet et al., 2010] attempts in-
stead to learn local rules that are partially independent on the
specific values and variables appearing in the examples.

A first major design choice in all such approaches concerns
the use of passive or active learning. Methods based on pas-
sive learning (e.g. Model seeker, the original CONACQ, and
the one from [Lallouet et al., 2010]) operate on a fixed collec-
tion of examples. Conversely, approaches based active learn-
ing (e.g. QUACQ and CONACQ.2) generate candidate exam-
ples themselves and query the generator (which in this case is
instead a constraint checker) for their validity. Active learn-
ing enables convergence using a smaller number of examples,
but is not applicable when a constraint checker is not avail-
able (e.g. when working on collections of historical data).

Among the mentioned approaches, only model seeker can
work using just positive examples, which makes it well suited
to deal with historical data. The system can also be used to
obtain, based on a handful of examples, a candidate list of
global constraints for modeling the problem. CONACQ and
QUACQ employ both positive and negative examples (which
may be a disadvantage), but are capable of using negative ex-
amples to quickly rule out large sets of constraints from the
bias (which is a considerable advantage). QUACQ has the pe-
culiarity of relying on partial examples, where only some of
the problem variables are instantiated. This allows to speed
up convergence both from a theoretical and practical perspec-
tive, giving the algorithm its namesake (QUick ACQuisition).

Finally, the method from [Lallouet et al., 2010] learns a
model using an intermediate representation; this is loosely in-
spired by modeling languages such as AMPL, OPL or MiniZ-
inc, which make a clear distinction between the problem
structure and its parameters. Thanks to this design choice, the
approach is able to learn parameter-free models, and to gen-
eralize results obtained on smaller instances to larger ones.
The price to pay for this impressive feat is a more complex
formalism and a somewhat reduced expressivity.

2.2 Incorporating Machine Learning Models

Unlike the approaches described in Section 2.1, the methods
considered here attempt to incorporate a fully-fledged Ma-
chine Learning model within a combinatorial optimization
model. Formally, these works deal with problems in the form:

min z = x0 (P2)

subject to: ⇡i(~x) 8i 2 I

⌫m(~xm,in, ~xm,out) 8m 2 M

~x 2 D~x

where the ⇡i(~x) predicates represent constraints obtained in
a traditional fashion, while each ⌫m(~xm,in, ~xm,out) is a pred-
icate that: 1) corresponds to a Machine Learning model m

optimization, portfolio selection and algorithm configuration.
Due to space limitations, we do not discuss the (many and
interesting) techniques that explore the other direction of in-
tegration (i.e. optimization techniques to improve ML algo-
rithms). Concluding remarks are provided in Section 7.

2 Learning Model Components

In this section we consider approaches that use implicit infor-
mation from a set of examples to obtain part of a combinato-
rial model, in particular a constraint or an objective function.
There are two main approaches to achieve this result: the first
(covered in Section 2.1) aims at extracting information using
the native constraint language of the solver; the second (in
Section 2.2) consists in embedding a fully-fledged Machine
Learning model in a combinatorial approach. As an extreme
case, in Section 2.3 we consider approaches where the ML
model makes up (almost) all of the combinatorial model.

2.1 Learning via a Native Constraint Language

Traditionally, combinatorial optimization models are born
from iterative interactions between a domain and an optimiza-
tion expert. Intuitively, ML could support modeling activities
by retaining the same process, but replacing the optimization
expert with a constraint acquisition algorithm, and the do-
main expert with an example generator. Formally, the ap-
proaches in this section aim at learning a model in the form:

min z = x0 (P1)

subject to: ⇡i(~x) 8i 2 I

~x 2 D~x

were ~x is the vector of problem variables and D~x their do-
main. The set I contains the indices of all problem con-
straints, represented here as predicates ⇡i(~x) that must hold in
any feasible solution. The x0 variable represents by conven-
tion the cost to be minimized, and is absent in pure constraint
satisfaction problems. Crucially, the predicates are defined
using the building blocks from the hosting approach (e.g.
global constraints in Constraint Programming, linear equal-
ities or inequalities in Mixed Integer Linear Programming):
what changes is just the way they are discovered.

The example generator may be a human, a collection of
data, or an existing automated system. In latter case, con-
straint acquisition can also be considered as a mean to ex-
plain in declarative terms the behavior of a procedural or sub-
symbolic decision support system. All approaches in this sec-
tion focus on learning constraints, rather than objective func-
tions: of course nothing prevents a constraint from represent-
ing the definition of the x0 variable (as done in P1).

This is the idea behind systems such as CONACQ [Bessiere
et al., 2017a] (in its various versions), QUACQ [Bessiere et
al., 2013], and model seeker [Beldiceanu and Simonis, 2012],
which build over the Constraint Programming paradigm, and
behind the method in [Lallouet et al., 2010], based on Induc-
tive Logic Programming. Both CONACQ and QUACQ oper-
ate by picking constraints from a set of potential (instanti-
ated) candidates (called a bias) and adding them to a target
constraint network. Model seeker attempts to match (possi-
bly) transformed subsets of variables in the training examples

against a collection of (non-instantiated) global constraints;
constraints that are compatible with all examples are added
to the current model, and a series of simplification steps at-
tempts to remove redundant relations. Since model seeker re-
lies does not need to consider explicitly all possible instantia-
tions in its candidate pool, it can usually deal with a large va-
riety of constraints. The downside is that finding a matching
becomes more complicated and requires the use of a heuristic
step. The method from [Lallouet et al., 2010] attempts in-
stead to learn local rules that are partially independent on the
specific values and variables appearing in the examples.

A first major design choice in all such approaches concerns
the use of passive or active learning. Methods based on pas-
sive learning (e.g. Model seeker, the original CONACQ, and
the one from [Lallouet et al., 2010]) operate on a fixed collec-
tion of examples. Conversely, approaches based active learn-
ing (e.g. QUACQ and CONACQ.2) generate candidate exam-
ples themselves and query the generator (which in this case is
instead a constraint checker) for their validity. Active learn-
ing enables convergence using a smaller number of examples,
but is not applicable when a constraint checker is not avail-
able (e.g. when working on collections of historical data).

Among the mentioned approaches, only model seeker can
work using just positive examples, which makes it well suited
to deal with historical data. The system can also be used to
obtain, based on a handful of examples, a candidate list of
global constraints for modeling the problem. CONACQ and
QUACQ employ both positive and negative examples (which
may be a disadvantage), but are capable of using negative ex-
amples to quickly rule out large sets of constraints from the
bias (which is a considerable advantage). QUACQ has the pe-
culiarity of relying on partial examples, where only some of
the problem variables are instantiated. This allows to speed
up convergence both from a theoretical and practical perspec-
tive, giving the algorithm its namesake (QUick ACQuisition).

Finally, the method from [Lallouet et al., 2010] learns a
model using an intermediate representation; this is loosely in-
spired by modeling languages such as AMPL, OPL or MiniZ-
inc, which make a clear distinction between the problem
structure and its parameters. Thanks to this design choice, the
approach is able to learn parameter-free models, and to gen-
eralize results obtained on smaller instances to larger ones.
The price to pay for this impressive feat is a more complex
formalism and a somewhat reduced expressivity.

2.2 Incorporating Machine Learning Models

Unlike the approaches described in Section 2.1, the methods
considered here attempt to incorporate a fully-fledged Ma-
chine Learning model within a combinatorial optimization
model. Formally, these works deal with problems in the form:
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a traditional fashion, while each ⌫m(~xm,in, ~xm,out) is a pred-
icate that: 1) corresponds to a Machine Learning model m

optimization, portfolio selection and algorithm configuration.
Due to space limitations, we do not discuss the (many and
interesting) techniques that explore the other direction of in-
tegration (i.e. optimization techniques to improve ML algo-
rithms). Concluding remarks are provided in Section 7.

2 Learning Model Components

In this section we consider approaches that use implicit infor-
mation from a set of examples to obtain part of a combinato-
rial model, in particular a constraint or an objective function.
There are two main approaches to achieve this result: the first
(covered in Section 2.1) aims at extracting information using
the native constraint language of the solver; the second (in
Section 2.2) consists in embedding a fully-fledged Machine
Learning model in a combinatorial approach. As an extreme
case, in Section 2.3 we consider approaches where the ML
model makes up (almost) all of the combinatorial model.

2.1 Learning via a Native Constraint Language

Traditionally, combinatorial optimization models are born
from iterative interactions between a domain and an optimiza-
tion expert. Intuitively, ML could support modeling activities
by retaining the same process, but replacing the optimization
expert with a constraint acquisition algorithm, and the do-
main expert with an example generator. Formally, the ap-
proaches in this section aim at learning a model in the form:

min z = x0 (P1)

subject to: ⇡i(~x) 8i 2 I

~x 2 D~x

were ~x is the vector of problem variables and D~x their do-
main. The set I contains the indices of all problem con-
straints, represented here as predicates ⇡i(~x) that must hold in
any feasible solution. The x0 variable represents by conven-
tion the cost to be minimized, and is absent in pure constraint
satisfaction problems. Crucially, the predicates are defined
using the building blocks from the hosting approach (e.g.
global constraints in Constraint Programming, linear equal-
ities or inequalities in Mixed Integer Linear Programming):
what changes is just the way they are discovered.

The example generator may be a human, a collection of
data, or an existing automated system. In latter case, con-
straint acquisition can also be considered as a mean to ex-
plain in declarative terms the behavior of a procedural or sub-
symbolic decision support system. All approaches in this sec-
tion focus on learning constraints, rather than objective func-
tions: of course nothing prevents a constraint from represent-
ing the definition of the x0 variable (as done in P1).

This is the idea behind systems such as CONACQ [Bessiere
et al., 2017a] (in its various versions), QUACQ [Bessiere et
al., 2013], and model seeker [Beldiceanu and Simonis, 2012],
which build over the Constraint Programming paradigm, and
behind the method in [Lallouet et al., 2010], based on Induc-
tive Logic Programming. Both CONACQ and QUACQ oper-
ate by picking constraints from a set of potential (instanti-
ated) candidates (called a bias) and adding them to a target
constraint network. Model seeker attempts to match (possi-
bly) transformed subsets of variables in the training examples

against a collection of (non-instantiated) global constraints;
constraints that are compatible with all examples are added
to the current model, and a series of simplification steps at-
tempts to remove redundant relations. Since model seeker re-
lies does not need to consider explicitly all possible instantia-
tions in its candidate pool, it can usually deal with a large va-
riety of constraints. The downside is that finding a matching
becomes more complicated and requires the use of a heuristic
step. The method from [Lallouet et al., 2010] attempts in-
stead to learn local rules that are partially independent on the
specific values and variables appearing in the examples.

A first major design choice in all such approaches concerns
the use of passive or active learning. Methods based on pas-
sive learning (e.g. Model seeker, the original CONACQ, and
the one from [Lallouet et al., 2010]) operate on a fixed collec-
tion of examples. Conversely, approaches based active learn-
ing (e.g. QUACQ and CONACQ.2) generate candidate exam-
ples themselves and query the generator (which in this case is
instead a constraint checker) for their validity. Active learn-
ing enables convergence using a smaller number of examples,
but is not applicable when a constraint checker is not avail-
able (e.g. when working on collections of historical data).

Among the mentioned approaches, only model seeker can
work using just positive examples, which makes it well suited
to deal with historical data. The system can also be used to
obtain, based on a handful of examples, a candidate list of
global constraints for modeling the problem. CONACQ and
QUACQ employ both positive and negative examples (which
may be a disadvantage), but are capable of using negative ex-
amples to quickly rule out large sets of constraints from the
bias (which is a considerable advantage). QUACQ has the pe-
culiarity of relying on partial examples, where only some of
the problem variables are instantiated. This allows to speed
up convergence both from a theoretical and practical perspec-
tive, giving the algorithm its namesake (QUick ACQuisition).

Finally, the method from [Lallouet et al., 2010] learns a
model using an intermediate representation; this is loosely in-
spired by modeling languages such as AMPL, OPL or MiniZ-
inc, which make a clear distinction between the problem
structure and its parameters. Thanks to this design choice, the
approach is able to learn parameter-free models, and to gen-
eralize results obtained on smaller instances to larger ones.
The price to pay for this impressive feat is a more complex
formalism and a somewhat reduced expressivity.

2.2 Incorporating Machine Learning Models

Unlike the approaches described in Section 2.1, the methods
considered here attempt to incorporate a fully-fledged Ma-
chine Learning model within a combinatorial optimization
model. Formally, these works deal with problems in the form:

min z = x0 (P2)

subject to: ⇡i(~x) 8i 2 I

⌫m(~xm,in, ~xm,out) 8m 2 M

~x 2 D~x

where the ⇡i(~x) predicates represent constraints obtained in
a traditional fashion, while each ⌫m(~xm,in, ~xm,out) is a pred-
icate that: 1) corresponds to a Machine Learning model m



• Relevant approaches 
–Building over the constraint programming 

paradigm
• CONACQ  [Bessiere et al. , 2017a] (in its various 

versions), 
• QUACQ  [Bessiere et al. , 2013], 
• Model seeker [Beldiceanu and Simonis, 2012]

–Building over Inductive logic programming 
• [Lallouet et al. , 2010]

Learning native constraint language
components



Version space learning [Mitchell82]

• Let X=x1,..,xn a set of attributes of domains D=D1,..,Dn

• A concept is a Boolean function
• f(xi)=0 =>  xi is a negative instance  
• f(xj)=1 =>  xj is a positive instance

• Given a set of hypothesis H, any subset of H represents 
a version space 

• A concept to learn is the set of positive instances that can be 
represented by a version space



Version space learning [Mitchell82]

• Most	specific	concept	to	learn:	

HDX

h1 h3
h2

h4

h5h6 h7

h8

h9

a	version	space

f ⌘ h2 ^ h6 ^ h9

f : (8xi 2 E+ : f(xi) = 1) ^ (8xi 2 E� : f(xi) = 0)

Concept	Learningpositives
E+

negatives
E-



Constraint acquisition as version
space learning

HDX

h1 h3
h2

h4

h5h6 h7

h8

h9

Constraint	network

CstDX

c1 c3
c2

c4

c5c6 c7

c8

c9

E+

Constraint	Programming:

positives
E+

negatives
E-

Concept	Learning

Constraint	Acquisitionpositives
E+

negatives
E-



Constraint acquisition

B

;• Inputs: 
• (X,D): Vocabulary
• Γ: Constraint language
• B: Bias (constraints/hypothesis)
• CT: Target Network (concept to learn)
• (E+,E-): training set

• Output:

• CL: Learned network such that: all positive
and no negative example covered

E -

E+

CT CL



Convergence/collapse state

B

;E -

E+

CT CL

CT

B



Convergence/collapse state

B

;E -

E+

CT CL

CT

B

Collapse	state



Acquisition via membership queries

• CONACQ	[Bessiere et	al.	AIJ17]
• SAT-Based	constraint	acquisition
• Bidirectional search	using	Membership	queries
• Conacq1.0	(passive	learning)
• Conacq2.0	(active	learning)

E+

E-

CL

e+ e-
K = (¬x1 ^ ¬x2 ^ ¬x3)

^
(x4 _ x5 _ x6 _ x7) . . .

Non-learnability	using	Membership	queries	[	Constraint	Acquisition,	AIJ17]



Quick acquisition

• QUACQ		[Bessiere et	al.	IJCAI13]

• Active	learning approach
• Bidirectional search

• But	it can be top-down	search if	no	positive	
example

• Based on	partial	queries	to	elucidate	the	scope	
of	the	constraint to	learn

• Learnability using partial	queries
E+

E-

CL



Membership queries

ask(2,	8,	4,	2,	6,	5,	1,	6) ask(2,	8,	4,	2,	6,	5,	1,	6)	=	No



Partial queries

ask(2,	8,	4,	2,	-,	-,	-,	-)	=	No



Partial queries

ask(2,	8,	-,	-,	-,	-,	-,	-)	=	Yes



Partial queries

ask(2,	8,	4,	-,	-,	-,	-,	-)	=	No



Partial queries

• The number of queries required to find the 
target concept is in:

• The number of queries required to converge is
in:  

O(|CT | · (log |X|+ |�|))

O(|B|)

E -

E+
QUACQ	needs	more	than	8000
queries	to	learn	the	Sudoku	model



Limitations

• Too many queries to generate a model

• More than 8000 queries for generating a SUDOKU model

• To overcome the limitation:
• Either elicit more knowledge when asking queries to the user
• Or learn structured problems

• Constraint acquisition works learning only binary constraints otherwise
the bias would grow exponentially



Acquisition via more complex
queries

• Matchmaker agents [Freuder and Wallace wAAAI97]

• Argument-Based CONACQ [Friedrich et al.09]

• ILP-Based Acquisition [Lallouet et al. 10]
E+

E-

CL



Matchmaker agents

• Matchmaker agents are based on the Constraint Acquisition and 
Satisfaction Problem (CASP) paradigm

• Two agents: the solver and the customer
• The customer knows the problem but not so explicitly that it can    

tell the solver outright 
• The solver suggests solutions based on the constraints it knows     

about 
• The customer then gives the solver the complete set of constraints 

violated by the last solution

Goal: limit the number of interactions 



Matchmaker agents

Goal: limit the number of interactions 

Two strategies:

SATISFACTION STRATEGIES 
• Try to find solutions that satisfy additional constraints w.r.t. the  

ones known by the solver 

VIOLATION STRATEGIES 
• Try to find solutions that violate most the constraints

Eugene C. Freuder, Richard J. Wallace: Suggestion Strategies for Constraint-Based Matchmaker 
Agents. International Journal on Artificial Intelligence Tools 11(1): 3-18 (2002)



Argument-based acquisition

• Argumentation based learning generates a 
logical theory C based on a set of arguments 
ARC provided by an domain expert

• An argument arg is a set of constraints
• We have positive, negative, too strong, 

necessary, sufficient, too weak arguments
• Implementation based on 

- QUICKXPLAIN finding the minimal 
conflict set

- HD-TREE: breadth first search to find all min
conflict sets + hitting set 



Argument-based acquisition

• The constraint acquisition algorithm continues to 
generate solutions until all the constraints in the 
given bias are fixed.

• Three stages: 
- generation of an example 
- validation of the solution by an expert 
- learning of the version space

K Schekotihin, G.Friedrich Argumentation Based Constraint Acquisition IEEE Int.Conf on Data Mining 2009



ILP-based acquisition

Use ILP to learn the model
• Search state = conjunction of litterals (clause)
• A rule r covers an example e if there exists σ

such that σ(r) ⊆ e
• State evaluation = number of covered positive 

examples, number of negative examples
rejected, size of the conjunction, etc.

• Search for a rule using classical ILP techniques 
(separate and conquer)

• Bidirectional search



ILP-based acquisition

Arnaud Lallouet, Matthieu Lopez, Lionel Martin, Christel Vrain:
On Learning Constraint Problems. ICTAI (1) 2010: 45-52



ILP-based acquisition



Structured problem acquisition: 
ModelSeeker

• ModelSeeker [Beldiceanu	and	Simonis,	CP11’12]

• Generates	constraint	models	for	structured	
problems	from	positive	examples	

• Based	on	global	constraint	catalogue	(≈1000)
• Buttom-up	search
• ModelSeeker learns	constraints	underlying	the	

scheduling	of	the	Bundesliga (the	German	Football	
Liga)	from	a	single	example	schedule.

E+

CL



Structured problem acquisition: 
ModelSeeker

A Model Seeker: Extracting Global Constraint Models from Positive Examples 143

As input data we receive the flat vector of numbers, we will reconstruct the matrix as
part of our analysis. Note that for most sports scheduling problems we will have access
to only one example solution, the published schedule for a given year, schedules from
different years encode different teams and constraints, and are thus incomparable.

2 Workflow

We will now describe how we proceed from the given positive examples to a candidate
list of constraints modeling the problem. The workflow is described in Figure 1. Data
are shown in green, software modules in blue/bold outline, and specific global constraint
catalog meta-data are shown in yellow/italics. We first give a brief overview of the
modules, and then discuss each step in more detail.

Transformation. In a first step, we try to convert the input samples to other, more
appropriate representations. This might involve replacing a 0/1 format with finite do-
main values, or converting different graph representations into the successor variable
form used by the global constraints in the catalog. For some transformations, we keep
both the original and the transformed representation for further analysis, for others we
replace the original sample with the transformed data.

Candidate
Generation

Candidate
Simplification

Meta-Data

Positive Samples

Transformation

Sequence Generation

Argument Creation

Constraint Seeker Call

Bottom-Up Dominance

Dominance Check

Trivia Removal

Candidate Conjunctions

Code Generation

Program

Domain Generation

Functional Dependency
Monotonicity

Constraint Checkers
Typical Restrictions

Aggregate

Implications
Contractible
Expandible

Density
Ranking

Fig. 1. Workflow in the Model Seeker

• Transformation:	transforms inputs	in	
suitable representations

• Sequence generation:	transforms vars	
in	regular sets

• Argument	creation:	creates patterns

• Constraint Seeker:	finds matching
constraints using the	catalogue

• The	followingthree steps reduce the	
set	of	constraints that are	output	of	
the	previous step



Embedding an ML model into
a combinatorial model

• where     are problem variables,        their domain and x0 is 
the variable representing the objective value,           are 
problem constraints (predicates) and
is  a proper encoding of a machine learning model in the
hosting language

Aimed at learning models in the general form: 

optimization, portfolio selection and algorithm configuration.
Due to space limitations, we do not discuss the (many and
interesting) techniques that explore the other direction of in-
tegration (i.e. optimization techniques to improve ML algo-
rithms). Concluding remarks are provided in Section 7.

2 Learning Model Components

In this section we consider approaches that use implicit infor-
mation from a set of examples to obtain part of a combinato-
rial model, in particular a constraint or an objective function.
There are two main approaches to achieve this result: the first
(covered in Section 2.1) aims at extracting information using
the native constraint language of the solver; the second (in
Section 2.2) consists in embedding a fully-fledged Machine
Learning model in a combinatorial approach. As an extreme
case, in Section 2.3 we consider approaches where the ML
model makes up (almost) all of the combinatorial model.

2.1 Learning via a Native Constraint Language

Traditionally, combinatorial optimization models are born
from iterative interactions between a domain and an optimiza-
tion expert. Intuitively, ML could support modeling activities
by retaining the same process, but replacing the optimization
expert with a constraint acquisition algorithm, and the do-
main expert with an example generator. Formally, the ap-
proaches in this section aim at learning a model in the form:

min z = x0 (P1)

subject to: ⇡i(~x) 8i 2 I

~x 2 D~x

were ~x is the vector of problem variables and D~x their do-
main. The set I contains the indices of all problem con-
straints, represented here as predicates ⇡i(~x) that must hold in
any feasible solution. The x0 variable represents by conven-
tion the cost to be minimized, and is absent in pure constraint
satisfaction problems. Crucially, the predicates are defined
using the building blocks from the hosting approach (e.g.
global constraints in Constraint Programming, linear equal-
ities or inequalities in Mixed Integer Linear Programming):
what changes is just the way they are discovered.

The example generator may be a human, a collection of
data, or an existing automated system. In latter case, con-
straint acquisition can also be considered as a mean to ex-
plain in declarative terms the behavior of a procedural or sub-
symbolic decision support system. All approaches in this sec-
tion focus on learning constraints, rather than objective func-
tions: of course nothing prevents a constraint from represent-
ing the definition of the x0 variable (as done in P1).

This is the idea behind systems such as CONACQ [Bessiere
et al., 2017a] (in its various versions), QUACQ [Bessiere et
al., 2013], and model seeker [Beldiceanu and Simonis, 2012],
which build over the Constraint Programming paradigm, and
behind the method in [Lallouet et al., 2010], based on Induc-
tive Logic Programming. Both CONACQ and QUACQ oper-
ate by picking constraints from a set of potential (instanti-
ated) candidates (called a bias) and adding them to a target
constraint network. Model seeker attempts to match (possi-
bly) transformed subsets of variables in the training examples

against a collection of (non-instantiated) global constraints;
constraints that are compatible with all examples are added
to the current model, and a series of simplification steps at-
tempts to remove redundant relations. Since model seeker re-
lies does not need to consider explicitly all possible instantia-
tions in its candidate pool, it can usually deal with a large va-
riety of constraints. The downside is that finding a matching
becomes more complicated and requires the use of a heuristic
step. The method from [Lallouet et al., 2010] attempts in-
stead to learn local rules that are partially independent on the
specific values and variables appearing in the examples.

A first major design choice in all such approaches concerns
the use of passive or active learning. Methods based on pas-
sive learning (e.g. Model seeker, the original CONACQ, and
the one from [Lallouet et al., 2010]) operate on a fixed collec-
tion of examples. Conversely, approaches based active learn-
ing (e.g. QUACQ and CONACQ.2) generate candidate exam-
ples themselves and query the generator (which in this case is
instead a constraint checker) for their validity. Active learn-
ing enables convergence using a smaller number of examples,
but is not applicable when a constraint checker is not avail-
able (e.g. when working on collections of historical data).

Among the mentioned approaches, only model seeker can
work using just positive examples, which makes it well suited
to deal with historical data. The system can also be used to
obtain, based on a handful of examples, a candidate list of
global constraints for modeling the problem. CONACQ and
QUACQ employ both positive and negative examples (which
may be a disadvantage), but are capable of using negative ex-
amples to quickly rule out large sets of constraints from the
bias (which is a considerable advantage). QUACQ has the pe-
culiarity of relying on partial examples, where only some of
the problem variables are instantiated. This allows to speed
up convergence both from a theoretical and practical perspec-
tive, giving the algorithm its namesake (QUick ACQuisition).

Finally, the method from [Lallouet et al., 2010] learns a
model using an intermediate representation; this is loosely in-
spired by modeling languages such as AMPL, OPL or MiniZ-
inc, which make a clear distinction between the problem
structure and its parameters. Thanks to this design choice, the
approach is able to learn parameter-free models, and to gen-
eralize results obtained on smaller instances to larger ones.
The price to pay for this impressive feat is a more complex
formalism and a somewhat reduced expressivity.

2.2 Incorporating Machine Learning Models

Unlike the approaches described in Section 2.1, the methods
considered here attempt to incorporate a fully-fledged Ma-
chine Learning model within a combinatorial optimization
model. Formally, these works deal with problems in the form:

min z = x0 (P2)

subject to: ⇡i(~x) 8i 2 I

⌫m(~xm,in, ~xm,out) 8m 2 M

~x 2 D~x

where the ⇡i(~x) predicates represent constraints obtained in
a traditional fashion, while each ⌫m(~xm,in, ~xm,out) is a pred-
icate that: 1) corresponds to a Machine Learning model m

optimization, portfolio selection and algorithm configuration.
Due to space limitations, we do not discuss the (many and
interesting) techniques that explore the other direction of in-
tegration (i.e. optimization techniques to improve ML algo-
rithms). Concluding remarks are provided in Section 7.

2 Learning Model Components

In this section we consider approaches that use implicit infor-
mation from a set of examples to obtain part of a combinato-
rial model, in particular a constraint or an objective function.
There are two main approaches to achieve this result: the first
(covered in Section 2.1) aims at extracting information using
the native constraint language of the solver; the second (in
Section 2.2) consists in embedding a fully-fledged Machine
Learning model in a combinatorial approach. As an extreme
case, in Section 2.3 we consider approaches where the ML
model makes up (almost) all of the combinatorial model.

2.1 Learning via a Native Constraint Language

Traditionally, combinatorial optimization models are born
from iterative interactions between a domain and an optimiza-
tion expert. Intuitively, ML could support modeling activities
by retaining the same process, but replacing the optimization
expert with a constraint acquisition algorithm, and the do-
main expert with an example generator. Formally, the ap-
proaches in this section aim at learning a model in the form:

min z = x0 (P1)

subject to: ⇡i(~x) 8i 2 I

~x 2 D~x

were ~x is the vector of problem variables and D~x their do-
main. The set I contains the indices of all problem con-
straints, represented here as predicates ⇡i(~x) that must hold in
any feasible solution. The x0 variable represents by conven-
tion the cost to be minimized, and is absent in pure constraint
satisfaction problems. Crucially, the predicates are defined
using the building blocks from the hosting approach (e.g.
global constraints in Constraint Programming, linear equal-
ities or inequalities in Mixed Integer Linear Programming):
what changes is just the way they are discovered.

The example generator may be a human, a collection of
data, or an existing automated system. In latter case, con-
straint acquisition can also be considered as a mean to ex-
plain in declarative terms the behavior of a procedural or sub-
symbolic decision support system. All approaches in this sec-
tion focus on learning constraints, rather than objective func-
tions: of course nothing prevents a constraint from represent-
ing the definition of the x0 variable (as done in P1).

This is the idea behind systems such as CONACQ [Bessiere
et al., 2017a] (in its various versions), QUACQ [Bessiere et
al., 2013], and model seeker [Beldiceanu and Simonis, 2012],
which build over the Constraint Programming paradigm, and
behind the method in [Lallouet et al., 2010], based on Induc-
tive Logic Programming. Both CONACQ and QUACQ oper-
ate by picking constraints from a set of potential (instanti-
ated) candidates (called a bias) and adding them to a target
constraint network. Model seeker attempts to match (possi-
bly) transformed subsets of variables in the training examples

against a collection of (non-instantiated) global constraints;
constraints that are compatible with all examples are added
to the current model, and a series of simplification steps at-
tempts to remove redundant relations. Since model seeker re-
lies does not need to consider explicitly all possible instantia-
tions in its candidate pool, it can usually deal with a large va-
riety of constraints. The downside is that finding a matching
becomes more complicated and requires the use of a heuristic
step. The method from [Lallouet et al., 2010] attempts in-
stead to learn local rules that are partially independent on the
specific values and variables appearing in the examples.

A first major design choice in all such approaches concerns
the use of passive or active learning. Methods based on pas-
sive learning (e.g. Model seeker, the original CONACQ, and
the one from [Lallouet et al., 2010]) operate on a fixed collec-
tion of examples. Conversely, approaches based active learn-
ing (e.g. QUACQ and CONACQ.2) generate candidate exam-
ples themselves and query the generator (which in this case is
instead a constraint checker) for their validity. Active learn-
ing enables convergence using a smaller number of examples,
but is not applicable when a constraint checker is not avail-
able (e.g. when working on collections of historical data).

Among the mentioned approaches, only model seeker can
work using just positive examples, which makes it well suited
to deal with historical data. The system can also be used to
obtain, based on a handful of examples, a candidate list of
global constraints for modeling the problem. CONACQ and
QUACQ employ both positive and negative examples (which
may be a disadvantage), but are capable of using negative ex-
amples to quickly rule out large sets of constraints from the
bias (which is a considerable advantage). QUACQ has the pe-
culiarity of relying on partial examples, where only some of
the problem variables are instantiated. This allows to speed
up convergence both from a theoretical and practical perspec-
tive, giving the algorithm its namesake (QUick ACQuisition).

Finally, the method from [Lallouet et al., 2010] learns a
model using an intermediate representation; this is loosely in-
spired by modeling languages such as AMPL, OPL or MiniZ-
inc, which make a clear distinction between the problem
structure and its parameters. Thanks to this design choice, the
approach is able to learn parameter-free models, and to gen-
eralize results obtained on smaller instances to larger ones.
The price to pay for this impressive feat is a more complex
formalism and a somewhat reduced expressivity.

2.2 Incorporating Machine Learning Models

Unlike the approaches described in Section 2.1, the methods
considered here attempt to incorporate a fully-fledged Ma-
chine Learning model within a combinatorial optimization
model. Formally, these works deal with problems in the form:

min z = x0 (P2)

subject to: ⇡i(~x) 8i 2 I

⌫m(~xm,in, ~xm,out) 8m 2 M

~x 2 D~x

where the ⇡i(~x) predicates represent constraints obtained in
a traditional fashion, while each ⌫m(~xm,in, ~xm,out) is a pred-
icate that: 1) corresponds to a Machine Learning model m

optimization, portfolio selection and algorithm configuration.
Due to space limitations, we do not discuss the (many and
interesting) techniques that explore the other direction of in-
tegration (i.e. optimization techniques to improve ML algo-
rithms). Concluding remarks are provided in Section 7.

2 Learning Model Components

In this section we consider approaches that use implicit infor-
mation from a set of examples to obtain part of a combinato-
rial model, in particular a constraint or an objective function.
There are two main approaches to achieve this result: the first
(covered in Section 2.1) aims at extracting information using
the native constraint language of the solver; the second (in
Section 2.2) consists in embedding a fully-fledged Machine
Learning model in a combinatorial approach. As an extreme
case, in Section 2.3 we consider approaches where the ML
model makes up (almost) all of the combinatorial model.

2.1 Learning via a Native Constraint Language

Traditionally, combinatorial optimization models are born
from iterative interactions between a domain and an optimiza-
tion expert. Intuitively, ML could support modeling activities
by retaining the same process, but replacing the optimization
expert with a constraint acquisition algorithm, and the do-
main expert with an example generator. Formally, the ap-
proaches in this section aim at learning a model in the form:

min z = x0 (P1)

subject to: ⇡i(~x) 8i 2 I

~x 2 D~x

were ~x is the vector of problem variables and D~x their do-
main. The set I contains the indices of all problem con-
straints, represented here as predicates ⇡i(~x) that must hold in
any feasible solution. The x0 variable represents by conven-
tion the cost to be minimized, and is absent in pure constraint
satisfaction problems. Crucially, the predicates are defined
using the building blocks from the hosting approach (e.g.
global constraints in Constraint Programming, linear equal-
ities or inequalities in Mixed Integer Linear Programming):
what changes is just the way they are discovered.

The example generator may be a human, a collection of
data, or an existing automated system. In latter case, con-
straint acquisition can also be considered as a mean to ex-
plain in declarative terms the behavior of a procedural or sub-
symbolic decision support system. All approaches in this sec-
tion focus on learning constraints, rather than objective func-
tions: of course nothing prevents a constraint from represent-
ing the definition of the x0 variable (as done in P1).

This is the idea behind systems such as CONACQ [Bessiere
et al., 2017a] (in its various versions), QUACQ [Bessiere et
al., 2013], and model seeker [Beldiceanu and Simonis, 2012],
which build over the Constraint Programming paradigm, and
behind the method in [Lallouet et al., 2010], based on Induc-
tive Logic Programming. Both CONACQ and QUACQ oper-
ate by picking constraints from a set of potential (instanti-
ated) candidates (called a bias) and adding them to a target
constraint network. Model seeker attempts to match (possi-
bly) transformed subsets of variables in the training examples

against a collection of (non-instantiated) global constraints;
constraints that are compatible with all examples are added
to the current model, and a series of simplification steps at-
tempts to remove redundant relations. Since model seeker re-
lies does not need to consider explicitly all possible instantia-
tions in its candidate pool, it can usually deal with a large va-
riety of constraints. The downside is that finding a matching
becomes more complicated and requires the use of a heuristic
step. The method from [Lallouet et al., 2010] attempts in-
stead to learn local rules that are partially independent on the
specific values and variables appearing in the examples.

A first major design choice in all such approaches concerns
the use of passive or active learning. Methods based on pas-
sive learning (e.g. Model seeker, the original CONACQ, and
the one from [Lallouet et al., 2010]) operate on a fixed collec-
tion of examples. Conversely, approaches based active learn-
ing (e.g. QUACQ and CONACQ.2) generate candidate exam-
ples themselves and query the generator (which in this case is
instead a constraint checker) for their validity. Active learn-
ing enables convergence using a smaller number of examples,
but is not applicable when a constraint checker is not avail-
able (e.g. when working on collections of historical data).

Among the mentioned approaches, only model seeker can
work using just positive examples, which makes it well suited
to deal with historical data. The system can also be used to
obtain, based on a handful of examples, a candidate list of
global constraints for modeling the problem. CONACQ and
QUACQ employ both positive and negative examples (which
may be a disadvantage), but are capable of using negative ex-
amples to quickly rule out large sets of constraints from the
bias (which is a considerable advantage). QUACQ has the pe-
culiarity of relying on partial examples, where only some of
the problem variables are instantiated. This allows to speed
up convergence both from a theoretical and practical perspec-
tive, giving the algorithm its namesake (QUick ACQuisition).

Finally, the method from [Lallouet et al., 2010] learns a
model using an intermediate representation; this is loosely in-
spired by modeling languages such as AMPL, OPL or MiniZ-
inc, which make a clear distinction between the problem
structure and its parameters. Thanks to this design choice, the
approach is able to learn parameter-free models, and to gen-
eralize results obtained on smaller instances to larger ones.
The price to pay for this impressive feat is a more complex
formalism and a somewhat reduced expressivity.

2.2 Incorporating Machine Learning Models

Unlike the approaches described in Section 2.1, the methods
considered here attempt to incorporate a fully-fledged Ma-
chine Learning model within a combinatorial optimization
model. Formally, these works deal with problems in the form:

min z = x0 (P2)

subject to: ⇡i(~x) 8i 2 I

⌫m(~xm,in, ~xm,out) 8m 2 M

~x 2 D~x

where the ⇡i(~x) predicates represent constraints obtained in
a traditional fashion, while each ⌫m(~xm,in, ~xm,out) is a pred-
icate that: 1) corresponds to a Machine Learning model m

optimization, portfolio selection and algorithm configuration.
Due to space limitations, we do not discuss the (many and
interesting) techniques that explore the other direction of in-
tegration (i.e. optimization techniques to improve ML algo-
rithms). Concluding remarks are provided in Section 7.

2 Learning Model Components

In this section we consider approaches that use implicit infor-
mation from a set of examples to obtain part of a combinato-
rial model, in particular a constraint or an objective function.
There are two main approaches to achieve this result: the first
(covered in Section 2.1) aims at extracting information using
the native constraint language of the solver; the second (in
Section 2.2) consists in embedding a fully-fledged Machine
Learning model in a combinatorial approach. As an extreme
case, in Section 2.3 we consider approaches where the ML
model makes up (almost) all of the combinatorial model.

2.1 Learning via a Native Constraint Language

Traditionally, combinatorial optimization models are born
from iterative interactions between a domain and an optimiza-
tion expert. Intuitively, ML could support modeling activities
by retaining the same process, but replacing the optimization
expert with a constraint acquisition algorithm, and the do-
main expert with an example generator. Formally, the ap-
proaches in this section aim at learning a model in the form:

min z = x0 (P1)

subject to: ⇡i(~x) 8i 2 I

~x 2 D~x

were ~x is the vector of problem variables and D~x their do-
main. The set I contains the indices of all problem con-
straints, represented here as predicates ⇡i(~x) that must hold in
any feasible solution. The x0 variable represents by conven-
tion the cost to be minimized, and is absent in pure constraint
satisfaction problems. Crucially, the predicates are defined
using the building blocks from the hosting approach (e.g.
global constraints in Constraint Programming, linear equal-
ities or inequalities in Mixed Integer Linear Programming):
what changes is just the way they are discovered.

The example generator may be a human, a collection of
data, or an existing automated system. In latter case, con-
straint acquisition can also be considered as a mean to ex-
plain in declarative terms the behavior of a procedural or sub-
symbolic decision support system. All approaches in this sec-
tion focus on learning constraints, rather than objective func-
tions: of course nothing prevents a constraint from represent-
ing the definition of the x0 variable (as done in P1).

This is the idea behind systems such as CONACQ [Bessiere
et al., 2017a] (in its various versions), QUACQ [Bessiere et
al., 2013], and model seeker [Beldiceanu and Simonis, 2012],
which build over the Constraint Programming paradigm, and
behind the method in [Lallouet et al., 2010], based on Induc-
tive Logic Programming. Both CONACQ and QUACQ oper-
ate by picking constraints from a set of potential (instanti-
ated) candidates (called a bias) and adding them to a target
constraint network. Model seeker attempts to match (possi-
bly) transformed subsets of variables in the training examples

against a collection of (non-instantiated) global constraints;
constraints that are compatible with all examples are added
to the current model, and a series of simplification steps at-
tempts to remove redundant relations. Since model seeker re-
lies does not need to consider explicitly all possible instantia-
tions in its candidate pool, it can usually deal with a large va-
riety of constraints. The downside is that finding a matching
becomes more complicated and requires the use of a heuristic
step. The method from [Lallouet et al., 2010] attempts in-
stead to learn local rules that are partially independent on the
specific values and variables appearing in the examples.

A first major design choice in all such approaches concerns
the use of passive or active learning. Methods based on pas-
sive learning (e.g. Model seeker, the original CONACQ, and
the one from [Lallouet et al., 2010]) operate on a fixed collec-
tion of examples. Conversely, approaches based active learn-
ing (e.g. QUACQ and CONACQ.2) generate candidate exam-
ples themselves and query the generator (which in this case is
instead a constraint checker) for their validity. Active learn-
ing enables convergence using a smaller number of examples,
but is not applicable when a constraint checker is not avail-
able (e.g. when working on collections of historical data).

Among the mentioned approaches, only model seeker can
work using just positive examples, which makes it well suited
to deal with historical data. The system can also be used to
obtain, based on a handful of examples, a candidate list of
global constraints for modeling the problem. CONACQ and
QUACQ employ both positive and negative examples (which
may be a disadvantage), but are capable of using negative ex-
amples to quickly rule out large sets of constraints from the
bias (which is a considerable advantage). QUACQ has the pe-
culiarity of relying on partial examples, where only some of
the problem variables are instantiated. This allows to speed
up convergence both from a theoretical and practical perspec-
tive, giving the algorithm its namesake (QUick ACQuisition).

Finally, the method from [Lallouet et al., 2010] learns a
model using an intermediate representation; this is loosely in-
spired by modeling languages such as AMPL, OPL or MiniZ-
inc, which make a clear distinction between the problem
structure and its parameters. Thanks to this design choice, the
approach is able to learn parameter-free models, and to gen-
eralize results obtained on smaller instances to larger ones.
The price to pay for this impressive feat is a more complex
formalism and a somewhat reduced expressivity.

2.2 Incorporating Machine Learning Models

Unlike the approaches described in Section 2.1, the methods
considered here attempt to incorporate a fully-fledged Ma-
chine Learning model within a combinatorial optimization
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There are two main approaches to achieve this result: the first
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Learning model in a combinatorial approach. As an extreme
case, in Section 2.3 we consider approaches where the ML
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any feasible solution. The x0 variable represents by conven-
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using the building blocks from the hosting approach (e.g.
global constraints in Constraint Programming, linear equal-
ities or inequalities in Mixed Integer Linear Programming):
what changes is just the way they are discovered.

The example generator may be a human, a collection of
data, or an existing automated system. In latter case, con-
straint acquisition can also be considered as a mean to ex-
plain in declarative terms the behavior of a procedural or sub-
symbolic decision support system. All approaches in this sec-
tion focus on learning constraints, rather than objective func-
tions: of course nothing prevents a constraint from represent-
ing the definition of the x0 variable (as done in P1).

This is the idea behind systems such as CONACQ [Bessiere
et al., 2017a] (in its various versions), QUACQ [Bessiere et
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which build over the Constraint Programming paradigm, and
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ing (e.g. QUACQ and CONACQ.2) generate candidate exam-
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instead a constraint checker) for their validity. Active learn-
ing enables convergence using a smaller number of examples,
but is not applicable when a constraint checker is not avail-
able (e.g. when working on collections of historical data).

Among the mentioned approaches, only model seeker can
work using just positive examples, which makes it well suited
to deal with historical data. The system can also be used to
obtain, based on a handful of examples, a candidate list of
global constraints for modeling the problem. CONACQ and
QUACQ employ both positive and negative examples (which
may be a disadvantage), but are capable of using negative ex-
amples to quickly rule out large sets of constraints from the
bias (which is a considerable advantage). QUACQ has the pe-
culiarity of relying on partial examples, where only some of
the problem variables are instantiated. This allows to speed
up convergence both from a theoretical and practical perspec-
tive, giving the algorithm its namesake (QUick ACQuisition).

Finally, the method from [Lallouet et al., 2010] learns a
model using an intermediate representation; this is loosely in-
spired by modeling languages such as AMPL, OPL or MiniZ-
inc, which make a clear distinction between the problem
structure and its parameters. Thanks to this design choice, the
approach is able to learn parameter-free models, and to gen-
eralize results obtained on smaller instances to larger ones.
The price to pay for this impressive feat is a more complex
formalism and a somewhat reduced expressivity.

2.2 Incorporating Machine Learning Models

Unlike the approaches described in Section 2.1, the methods
considered here attempt to incorporate a fully-fledged Ma-
chine Learning model within a combinatorial optimization
model. Formally, these works deal with problems in the form:
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Motivating example problem: traffic light placement

Add/remove traffic light over a whole city
Traffic lights can be connected (green wave)
Every operation has a cost (and there is a budget)
Probably other constraints (not considered)
Improve traffic figures 

HP: we want to solve it! What is the toughest obstacle?



An example problem: traffic light placement

Add/remove traffic light over a whole city
Traffic lights can be connected (green wave)
Every operation has a cost (and there is a budget)
Probably other constraints (not considered)
Improve traffic figures

Assessing the effect of traffic light
placement on the traffic levels:

Impossible via expert-designed declarative models
Human behaviour – complex system

HP: we want to solve it! What is the toughest obstacle?



Assessing the effect of traffic light
placement on the traffic levels

Traffic light placement: decidables
Traffic levels: observables 

WE WANT TO LEARN THE IMPACT OF DECIDABLES 
ON OBSERVABLES

and 
CAST THIS INTO AN OPTIMIZATION MODEL



A second example: policies for PV adoption

Given a target of PV adoption to be achieved
Decide which incentives to give
Every incentive has a cost (and there is a budget)
Probably other constraints (not considered)

HP: we want to solve it! What is the toughest obstacle?



A second example: policies for PV adoption

Given a target of PV adoption to be achieved
Decide which incentives to give
Every incentive has a cost (and there is a budget)
Probably other constraints (not considered)

HP: we want to solve it! What is the toughest obstacle?

Assessing the effect of incentives on PV adoption:
Impossible via expert-designed declarative models

Human behaviour – Social Dynamics



Assessing the effect of incentives on PV adoption

Incentives: decidables
PV adoption levels: observables 

WE WANT TO LEARN THE IMPACT OF DECIDABLES 
ON OBSERVABLES

and 
CAST THIS INTO AN OPTIMIZATION MODEL



A third example: thermal aware allocation on HPCs

Given a target heterogeneous platform and a workload
Decide workload (tasks) dispatching
Every task has a thermal dynamics (and there is a thermal controller)
Load balancing constraints
With thermal limits

A third example: thermal-aware workload dispatching



A third example: thermal aware allocation on HPCs

Given a target heterogeneous embedded platform and a workload
Decide task allocation and scheduing
Every task has a thermal dynamics (and there is a thermal controller)
Probably other constraints (not considered)

HP: we want to solve it! What is the toughest obstacle?

A third example: thermal-aware workload dispatching



A third example: thermal aware allocation on HPCs

Given a target heterogeneous embedded platform and a workload
Decide task allocation and scheduing
Every task has a thermal dynamics (and there is a thermal controller)
Probably other constraints (not considered)

HP: we want to solve it! What is the toughest obstacle?

Assessing the effect of workload allocation on thermal 
dynamics:

Possible with simulation based on differential 
equations of the thermal dynamics BUT not 

manageable by combinatorial optimization techniques

A third example: thermal-aware workload dispatching



A third example: thermal aware allocation on HPCs

Assessing the effect of workload allocation on 
thermal dynamics:

Workload allocations: decidables
Core temperatures: observables 

WE WANT TO LEARN THE IMPACT OF DECIDABLES 
ON OBSERVABLES

and 
CAST THIS INTO AN OPTIMIZATION MODEL



A strong combinatorial structure

What do these problems have in common?

Part of the problem is not easily described through a 
manageable declarative model  

We have access to problem data (historical, simulated, real) to 
create a training set

Decisions influence predictions and vice versa



Empirical Model Learning - EML

Start from a set of observations extracted from runs on a real 
system

Sample the allocation space by running the system with different inputs 
of workload dispatching 
Produce a training set126 A. Bartolini et al.
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Fig. 2. Temperature and power dynamics on a single experiment

We computed optimized workload allocation and frequency assignments for both
the target platforms, by running each approach for 90 seconds on an Intel Core 2
T7200, 2GHz; the resulting solutions were executed on the simulation framework,
with all cores starting from a room temperature of 26.5◦C. Since all considered
variants make use of approximated thermal model, there is no theoretical guar-
antee for the dominance of one approach over another: the use of simulation to
evaluate the results ensures a fair comparison and a reliable effectiveness assess-
ment. Moreover, since the optimized solution are evaluated via simulation, the
results are unaffected by any numerical issue in the models.

The typical thermal behavior exhibited by the NN approach solutions is de-
picted in Figure 2, showing both temperature and power dynamics for a single
experiment; each line in the graphs corresponds to a PE: as one can see, after
an initial transient behavior the temperature becomes pretty stable, thanks to
the thermal aware allocation.

Next, we compared the final (simulated) peak temperature obtained by each of
the considered approaches; the results are shown in Figure 3, depicting for the 40
instances the distribution (histogram) of the difference THH−TNN (in dark grey) and
TPP−TNN (in light grey). For the considered configuration, discrepancies of around
1-2◦C were found to be already significant; as one can see, the network based ap-
proach is consistently better than the HH one and even improves (on average) the
PP approach, which is known to use a very good temperature proxy measure.

In order to investigate the effect of non-homogeneity, we performed a sec-
ond evaluation after having asymmetrically pre-heated the target platforms; in
this case the starting temperature for each core are 31.05◦C, 33.55◦C, 35.75◦C,
36.48◦C. The resulting differences in the final peak temperature are shown in
Figure 4; as one can see the advantage of the NN approach becomes more rel-
evant, due to the inability of the surrogate objective functions to capture the
initial asymmetry.



Learn an approximate function via Machine Learning

Empirical Model Learning - EML

f: dispatching         temperature

Start from a set of monitoring data from the real system: 

temp_(0)

acpi_3

acpi_2

acpi_1

acpi_0

temp_3(Δ)

Average CPI



Start from a set of observations
Learn an approximate function via Machine Learning

Embed this “empirical model” inside an optimization model

Empirical Model Learning - EML

min z = f(~y)

subject to: ~y = g(~x)

all manner of complex constraints

...



In principle……
we can have a combinatorial problem solver
and a black box tool to test the solution

Combinatorial 
Optimization 
component

solution

Black-box solution 
evaluator

evaluation

Can be very expensive
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In principle……
we can have a combinatorial problem solver
and a black box tool to test the solution

Scatter search + 
predictors of the 

simulation outcome

solution

System
Simulator

evaluation

Note: these predictors 
enable a selection of 

solutions to be sent to 
the simulator

Can be very expensive

[OptQuest M. Laguna, 2011]



In principle……
we can have a combinatorial problem solver
and a black box tool to test the solution

What if the black box tool is a machine learning model?

Combinatorial 
Optimization 
component

solution

Machine learning 
model

evaluation

Can be expensive to 
train but after training it 
is very efficient to use

Surrogate models: [Henao, Maravelias, AIChE 2011], [Cozad, Sahinidis, Miller, 2014] 



In principle……
we can have a combinatorial problem solver
and a black box tool to test the solution

What if the black box tool is a machine learning model?

Combinatorial 
Optimization 
component

solution

Machine learning 
model

evaluation

Can be expensive to 
train but after training it 
is very efficient to use

Still….. a generate and test mechanism



Empirical Model Learning – EML

In EML the learned model is embedded into the optimization
component and used to actively reduce the search space
during execution

Combinatorial 
Optimization 
component

Machine learning 
model



Empirical Model Learning – EML

In EML the learned model is embedded into the optimization
component an used to actively reduce the search space
during execution

Combinatorial 
Optimization 
component

Machine learning 
model

Not limited to objective functions, 
but also constraints and any relation 
between decidables and observables

Lombardi, Milano, Bartolini, Empirical
Decision Model Learning, AIJ (244), 2017



Empirical Model Learning – EML

What is the difference between EML and the traditional use of 
ML models?

Traditional approaches work forward

Workload
dispatching

Core 
temperaturesML model



Empirical Model Learning – EML

What is the difference between EML and the traditional use of 
ML models?

ML model

EML works forward and backward

Workload
dispatching

Core 
temperatures

The ML model becomes a constraint: given temperature 
limits we remove combinations of workload decisions that

lead to inconsistent temperatures



A third example: thermal aware allocation on HPCsThermal-aware workload dispatching

Given n tasks m cores
ΣjΣi xij =  1 

Σi xij = n/m Load balancing
Other constraints (e.g. scheduling)
xij is 1 if task i is allocated on core j

COMBINATORIAL COMPONENT

min (max tempj)
ΣjΣi xij ≤  1 
Σi xij = n/m 
EM(x, temp)

Other constraints (e.g. scheduling)

xij is 1 if task i is allocated on core j

One NN per core
MACHINE LEARNING MODEL



Empirical Model Learning – EML

The questions are: 
1) how do we embedded Machine learning models into a 

combinatorial model?
2) How do we provide operational semantics to these models so 

that they can actively prune the search space?

We will explore: 
• Neural Networks
• Decision Trees
In different optimization techniques: CP in the talk, but also
MINLP/ILP, SMT



Artificial Neural Networks

• Computational model, consisting of parallel computation units
(neurons) connected in a network structure

• Usually: no cycles (feed-forward) and multiple layers

input hidden output



Artificial Neuron = scalar function with vector input

• "a" is the neuron activity
• "f" is the activation function
• weights are obtained in the learning phase

Artificial Neural Networks

The activation function is a monotonic non-decreasing function of 
the neuron activity 

Bartolini, Lombardi, Milano, Benini, Neuron Constraints to Model
Complex Real World Problems, CP2011.



Neural Networks in a Combinatorial Model

A Neural Network is a declarative (nonlinear) model

• Can be embedded in a MINLP model directly

1. We should insert variables for NN inputs and outputs in the model
2. Insert the NN non linear equations in the model



Neural Networks in a Combinatorial Model

act.function([X], Y, [W], b)

A Neural Network is a declarative (nonlinear) model

• Can be embedded in a CP model via variables and constraints
• Here: artificial neuron = a global "neuron constraint"

Output variable
Weights Bias

Input variables



Structure of the Neuron Constraint

• An internal variable A for the neuron activity
• Bound consistency on the equality:

• Similar rules for minima
• The value                        is replaced by                                                   

to avoid precision errors
• Filtering from Y to A and from A to Y

Filtering for the activation function:
1.
2.

We can combine many neuron constraints in a artificial neural 
network global constraint: ann(output, inputs)
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EML: CP model

Problem data:
§ n tasks (with CPI values)
§ Each task is assumed to run indefinitely
§ m = 48 cores
§ Room temperature

Decision variables:

Balancing constraints:
Roughly the same number of tasks per core



EML: CP Model

Equivalent allocation variables:

Average CPI per core (FEATURE COMPUTATION):

Neural Network: collection of act_function constraints

Objective:

annj(ctempj , ACPIj , ACPIngbr . . . , rtemp)

min max
j2cores

ctempj

Bartolini, Lombardi, Milano, Benini, Optimization and 
Controlled Systems: A Case Study on Thermal Aware 
Workload Dispatching, AAAI 2012



Results
364 M. Lombardi et al. / Artificial Intelligence 244 (2017) 343–367

Table 6
Solution quality of several approaches as measured on the target system. The values within square brackets are standard deviations of the efficiency of the 
platform cores (for a single solution), rather than standard deviations taken over multiple runs.

# ACPI wACPI FEAT ANN0 ANN1

LS LS LS CP CP

sim (%) sim (%) sim (%) sim (%) sim (%)

0 53.5 (14.3) 53.1 (8.3) 58.5 (7.7) 63.8 (6.3) 60.8 (7.0)
1 56.8 (11.1) 52.1 (10.8) 62.8 (7.5) 63.4 (6.7) 65.0 (7.5)
2 53.9 (13.8) 59.7 (9.0) 56.4 (9.1) 58.4 (7.7) 58.0 (8.5)
3 50.2 (13.7) 54.0 (9.2) 48.7 (7.8) 64.3 (7.0) 60.9 (9.1)
4 61.0 (10.8) 53.2 (8.1) 50.0 (8.5) 60.0 (7.2) 46.7 (10.7)
5 52.5 (13.2) 52.5 (8.4) 56.7 (7.6) 65.7 (6.7) 59.2 (7.9)
6 58.1 (12.5) 57.1 (10.6) 56.6 (8.1) 62.9 (7.3) 60.2 (9.1)
7 51.9 (13.3) 58.3 (8.9) 59.6 (8.5) 65.1 (6.4) 67.2 (7.0)
8 60.3 (11.1) 58.7 (8.7) 56.4 (10.5) 63.4 (6.5) 65.2 (7.7)
9 60.1 (11.1) 63.0 (10.1) 60.0 (7.2) 67.7 (5.7) 65.4 (6.6)

10 61.8 (11.6) 53.4 (12.0) 56.2 (9.0) 65.2 (6.7) 62.9 (7.9)
11 59.2 (11.8) 50.1 (8.4) 48.8 (8.3) 57.1 (6.1) 56.0 (10.3)
12 57.0 (11.9) 59.2 (9.2) 56.1 (9.8) 65.2 (7.8) 63.5 (8.3)
13 50.0 (11.0) 54.2 (7.8) 55.1 (8.4) 63.9 (6.4) 59.1 (8.5)
14 51.6 (14.9) 55.6 (8.7) 57.2 (8.9) 59.5 (7.7) 65.2 (7.3)
15 55.3 (11.6) 55.2 (10.1) 60.2 (9.6) 63.1 (7.3) 61.7 (7.1)
16 51.8 (12.1) 56.6 (8.3) 50.8 (7.9) 63.9 (8.0) 56.9 (9.6)
17 60.5 (12.3) 64.7 (9.8) 60.0 (7.2) 67.5 (6.2) 65.7 (8.0)
18 51.0 (12.8) 51.7 (9.0) 55.6 (8.0) 63.5 (6.8) 66.5 (7.3)
19 54.3 (12.5) 53.1 (10.8) 56.6 (8.4) 63.8 (8.3) 66.0 (8.5)

Fig. 7. Simulated efficiency values for LSbal(ACPI). (For interpretation of the references to color in this figure, the reader is referred to the web version of 
this article.)

The solution approaches based on ANN models obtained in general better results than those with a linear objective, 
including the FEAT model for which the coefficients were obtained via linear regression. The advantage is in terms of both 
the minimum efficiency and the standard deviation. The results obtained with the more accurate network (ANN0) tend in 
turn to be better than those obtained with the simplified ANN1.

The results of the simulation for the ACPI and the ANN0 models can be observed in detail in Fig. 7 and Fig. 8. Each 
subfigure corresponds to an instance, and each tile within a subfigure corresponds to a core (we recall that the platform has 
an 8 × 6 layout). Green/red tiles respectively denote higher/lower efficiency values: a full red corresponds to 50% efficiency, 
while a full green to 100%. The LSbal(ACPI) approach (Fig. 7) is often able to obtain fairly balanced workloads. However, the 
produced mappings do occasionally lead to abnormally low efficiency for some cores. This happens even in cases where the 

Heat generated on the cores by 
MILP using an expert design model

Heat generated on the cores by 
the EML approach

M. Lombardi et al. / Artificial Intelligence 244 (2017) 343–367 365

Fig. 8. Simulated efficiency values for CPbal(ANN0). (For interpretation of the references to color in this figure, the reader is referred to the web version of 
this article.)

solution is close to optimal: by cross-checking the results with those of Table 4 , it is possible to see for example that very 
low efficiency values occur on instance #15, where the cost function has value 2.76 against a bound of 2.80. The efficiency 
maps from Fig. 8, corresponding to the solutions provided by CPbal(ANN0), are much more uniform.

By comparing the results of Table 6 with those from Table 4 , it can be seen that the predicted (minimum) efficiency 
levels tend to be 5–10% higher than the real values. On this regard, there are two interesting facts to observe: first, despite 
the significant error level, the CP solutions (with the ANN0 model) are very well balanced in terms of efficiency: this 
suggests that the overestimation tends to be similar over all cores. Second, the error level is of the same order of the largest 
errors in the EM evaluation from Section 7. This strengthens the idea that the optimizer may be attracted by solutions 
with a high predicted quality, but also a large margin of error. This behavior, although certainly not ideal, is actually not 
totally undesirable: in fact, it may provide a systematic approach to make the Empirical Model more robust by including 
the simulated solutions in the training set. This method may allow us to improve the model robustness without the need 
to increase dramatically the training set size. We leave the investigation of this idea as a topic for future research.

9. Concluding remarks

We have proposed here a methodology (called Empirical Model Learning) for merging Machine Learning and optimization 
by extracting decision model components from data, which may come from a simulator or from the real system. Our 
emphasis is on defining techniques for embedding ML models in Combinatorial Optimization, which should be designed so 
that the optimization engine can exploit the ML model for boosting the search process.

We have discussed the main steps of the methodology, using as motivating and running examples two thermal-aware 
workload dispatching problems. The ML techniques adopted are Artificial Neural Network and Decision Trees that have been 
encoded in Local Search, Constraint Programming, Mixed Integer Non-Linear Programming (only ANNs) and SAT Modulo 
Theory (only DTs).

Designing a good empirical model may still be a non-trivial task, but allows for better accuracy w.r.t. to expert designed 
heuristics. Experiments show the clear advantages of using a data-extracted model in terms of quality of the final solutions. 
Constraint Programming has been shown to be particularly effective, due to the expressive modeling language and the 
filtering algorithms.

Further improvements may be obtained by increasing the accuracy of the Empirical Models: for example, using Instruc-
tions Per Clock rather than CPIs allows to better characterize computation-intensive jobs, i.e. the most critical for efficiency 
prediction. We have tested this approach and found that it leads to significant improvements over ANN1, but not over ANN0.

The Empirical Model Learning approach enables the application of optimization techniques to complex real world prob-
lems that used to be either very hard or impossible to tackle. As a main benefit, the approach opens up new application 
areas. In particular, EML may be instrumental in bridging the gap between predictive and prescriptive analytics.

Solution Approach:
§ Model solved via Large Neighborhood Search (LNS)
§ First solution via a CPI balancing heuristic



Three encodings:
Meta-constraints
Table constraint
Other encodings

How to cast a decision tree in a combinatorial model

Decision Trees Optimization
Model

Extension: Random Forests Bonfietti, Lombardi, Milano: Embedding 
Decision Trees and Random Forests in CP, 
CPAIOR 2011



Decision Tree
Input: tuple of attribute values
Output: a class

numeric attribute

symbolic attribute

branch labels

class labels



Classification example

A: 30, B: 20, C: 1



Classification example

A: 30, B: 20, C: 1



Classification example

A: 30, B: 20, C: 1
class = 1



How do we embed a DT in CP?
A decision variable for each attribute
A ∈ {-inf, inf}
B ∈ {-inf, inf}
C ∈ {0, 1}

A decision variable for the class
Y ∈ {0, 1}

Enforce consistency on:

This is the tricky part



Encoding #1

A path is an 
implication

[A > 20] ⋀ [C = 0] ⋀ [B > 20] [Y = 1]⇒



Encoding #1

[A > 20] ⋀ [C = 0] ⋀ [B > 20]

A path is an 
implication

[Y = 1]

The tree defines
all the paths

([A > 20] ⋀ [C = 1]) ⋁

([A ≤ 20] ⋀ [B ≤ 10] ⋀ [C = 1] ⋀ [A > 10])

( ) ⋁

⇔



Encoding #1

A path is an 
implication

The tree defines
all the paths

Polynomial size 
Polynomial time propagation 
Does not enforce GAC
Very suitable for SMT

Can we do better?



Encoding #2

Path ↔� set of 
feasible assignments

A B C Y
21 21 0 1
21 22 0 1
21 23 0 1
… … … …

We can use a
table constraint!

Issue #1
numeric attributes
use discretization

Bessiere, Regin, IJCAI 97



Encoding #2

Path ↔� set of 
feasible assignments

A B C Y
21 21 0 1
21 22 0 1
21 23 0 1
… … … …

Continuous attributes can be discretised using the 
splitting thresholds appearing in the tree
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instance number

Solution quality
20 instances, 48 cores, 288 jobs
CP with LNS against Localsolver, 90 sec time limit



More compact encodings: 
• use an MDD
• use compressed tuples
• convert to a sNNF - sdNNF
• decomposition approaches

Variants
• Random forests
• Regression trees
• Multi-output trees

Technical report



Ease of embedding (a EM in a global constraint)
Flexibility and modularity (the EM is “just a constraint”)

But CP is very well suited for EML!

EML enables combinatorial optimization over 
complex real world systems

It’s not the only solution…
…and it does not need to be about CP

In a nutshell:



Ease of embedding (a Neural Network in a global constraint)
Flexibility and modularity (the EM is “just a constraint”)

But CP is very well suited for EML!

It’s not the only solution…
…and it does not need to be about CP

Which issues shall we address to make it work?

In a nutshell:

EML enables combinatorial optimization over 
complex real world systems



You can always embed a ML in (e.g.) Local Search
Can CP work better?

Yes (we have data)! Mainly thanks to propagation

Issue #1



You can always embed a ML in (e.g.) Local Search
Can CP work better?

Yes (we have data)! Mainly thanks to propagation

Issue #1

We need inference methods for ML models 
(e.g. bounds on the I/O of a Neural Network)

Inference should be effective (tight bounds)
Inference should be efficient



Issue #2

Complex ML models Simple ML models
more accurate less accurate

slow, weak propagation effective propagation

Risk: poor quality solutions Risk: apparently good solutions



Issue #2

There is an accuracy/optimization trade-off
How to characterize it?
Can we find design rules?

Complex ML models Simple ML models
more accurate less accurate

slow, weak propagation effective propagation

Risk: poor quality solutions Risk: apparently good solutions

We are currently working on Deep NN with a Google Faculty Award



• Very interesting approach by Fischetti and Jo:
• They model a DNN with fixed weights in MIP
• They define upper bound tightening procedures as follows 

M. Fischetti, Jason Jo, Deep neural networks and mixed integer linear optimization, Constraints 23, 
2018

- They consider units layer by layer
- For the current unit, remove from the model all the constraints and 

variables related to all other units in the same layer or in 
subsequent layers

- Solve twice the resulting model for min and max the output



A typical training set in ML looks like this:

Issue #3
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Input configurations

Historical data



The ML model provides a prediction for every input value

Issue #3
Ou

tp
ut
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Input configurations

Predictions



The optimizer will search for the best one (HP: prediction = cost)

Issue #3
Ou

tp
ut
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s

Input configurations

Final solution



If this is far from known examples, there may be a large error

Issue #3
Ou

tp
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Input configurations

True
value



If this is far from known examples, there may be a large error

Issue #3
Ou

tp
ut

 v
al

ue
s

Input configurations

True
value

How do we choose representative observations?
Borrow concepts from black-box optimization, surrogate 

model construction by adaptive sampling



Many ML model provide estimated confidence levels

Issue #4

Can we take them into account when optimizing?



Many ML model provide estimated confidence levels

Issue #4

Can we take them into account when optimizing?

Some ML models can deal with uncertain inputs

Can we employ EML in stochastic optimization?

Some errors are more important than other



Using ML to solve the problem

• where     are problem variables,        their domain and x0 is 
the variable representing the objective value, 
and is  a proper encoding of a machine 

learning model in the hosting language

Aimed at learning models in the general form: 

optimization, portfolio selection and algorithm configuration.
Due to space limitations, we do not discuss the (many and
interesting) techniques that explore the other direction of in-
tegration (i.e. optimization techniques to improve ML algo-
rithms). Concluding remarks are provided in Section 7.

2 Learning Model Components

In this section we consider approaches that use implicit infor-
mation from a set of examples to obtain part of a combinato-
rial model, in particular a constraint or an objective function.
There are two main approaches to achieve this result: the first
(covered in Section 2.1) aims at extracting information using
the native constraint language of the solver; the second (in
Section 2.2) consists in embedding a fully-fledged Machine
Learning model in a combinatorial approach. As an extreme
case, in Section 2.3 we consider approaches where the ML
model makes up (almost) all of the combinatorial model.

2.1 Learning via a Native Constraint Language

Traditionally, combinatorial optimization models are born
from iterative interactions between a domain and an optimiza-
tion expert. Intuitively, ML could support modeling activities
by retaining the same process, but replacing the optimization
expert with a constraint acquisition algorithm, and the do-
main expert with an example generator. Formally, the ap-
proaches in this section aim at learning a model in the form:

min z = x0 (P1)

subject to: ⇡i(~x) 8i 2 I

~x 2 D~x

were ~x is the vector of problem variables and D~x their do-
main. The set I contains the indices of all problem con-
straints, represented here as predicates ⇡i(~x) that must hold in
any feasible solution. The x0 variable represents by conven-
tion the cost to be minimized, and is absent in pure constraint
satisfaction problems. Crucially, the predicates are defined
using the building blocks from the hosting approach (e.g.
global constraints in Constraint Programming, linear equal-
ities or inequalities in Mixed Integer Linear Programming):
what changes is just the way they are discovered.

The example generator may be a human, a collection of
data, or an existing automated system. In latter case, con-
straint acquisition can also be considered as a mean to ex-
plain in declarative terms the behavior of a procedural or sub-
symbolic decision support system. All approaches in this sec-
tion focus on learning constraints, rather than objective func-
tions: of course nothing prevents a constraint from represent-
ing the definition of the x0 variable (as done in P1).

This is the idea behind systems such as CONACQ [Bessiere
et al., 2017a] (in its various versions), QUACQ [Bessiere et
al., 2013], and model seeker [Beldiceanu and Simonis, 2012],
which build over the Constraint Programming paradigm, and
behind the method in [Lallouet et al., 2010], based on Induc-
tive Logic Programming. Both CONACQ and QUACQ oper-
ate by picking constraints from a set of potential (instanti-
ated) candidates (called a bias) and adding them to a target
constraint network. Model seeker attempts to match (possi-
bly) transformed subsets of variables in the training examples

against a collection of (non-instantiated) global constraints;
constraints that are compatible with all examples are added
to the current model, and a series of simplification steps at-
tempts to remove redundant relations. Since model seeker re-
lies does not need to consider explicitly all possible instantia-
tions in its candidate pool, it can usually deal with a large va-
riety of constraints. The downside is that finding a matching
becomes more complicated and requires the use of a heuristic
step. The method from [Lallouet et al., 2010] attempts in-
stead to learn local rules that are partially independent on the
specific values and variables appearing in the examples.

A first major design choice in all such approaches concerns
the use of passive or active learning. Methods based on pas-
sive learning (e.g. Model seeker, the original CONACQ, and
the one from [Lallouet et al., 2010]) operate on a fixed collec-
tion of examples. Conversely, approaches based active learn-
ing (e.g. QUACQ and CONACQ.2) generate candidate exam-
ples themselves and query the generator (which in this case is
instead a constraint checker) for their validity. Active learn-
ing enables convergence using a smaller number of examples,
but is not applicable when a constraint checker is not avail-
able (e.g. when working on collections of historical data).

Among the mentioned approaches, only model seeker can
work using just positive examples, which makes it well suited
to deal with historical data. The system can also be used to
obtain, based on a handful of examples, a candidate list of
global constraints for modeling the problem. CONACQ and
QUACQ employ both positive and negative examples (which
may be a disadvantage), but are capable of using negative ex-
amples to quickly rule out large sets of constraints from the
bias (which is a considerable advantage). QUACQ has the pe-
culiarity of relying on partial examples, where only some of
the problem variables are instantiated. This allows to speed
up convergence both from a theoretical and practical perspec-
tive, giving the algorithm its namesake (QUick ACQuisition).

Finally, the method from [Lallouet et al., 2010] learns a
model using an intermediate representation; this is loosely in-
spired by modeling languages such as AMPL, OPL or MiniZ-
inc, which make a clear distinction between the problem
structure and its parameters. Thanks to this design choice, the
approach is able to learn parameter-free models, and to gen-
eralize results obtained on smaller instances to larger ones.
The price to pay for this impressive feat is a more complex
formalism and a somewhat reduced expressivity.

2.2 Incorporating Machine Learning Models

Unlike the approaches described in Section 2.1, the methods
considered here attempt to incorporate a fully-fledged Ma-
chine Learning model within a combinatorial optimization
model. Formally, these works deal with problems in the form:

min z = x0 (P2)

subject to: ⇡i(~x) 8i 2 I

⌫m(~xm,in, ~xm,out) 8m 2 M

~x 2 D~x

where the ⇡i(~x) predicates represent constraints obtained in
a traditional fashion, while each ⌫m(~xm,in, ~xm,out) is a pred-
icate that: 1) corresponds to a Machine Learning model m

optimization, portfolio selection and algorithm configuration.
Due to space limitations, we do not discuss the (many and
interesting) techniques that explore the other direction of in-
tegration (i.e. optimization techniques to improve ML algo-
rithms). Concluding remarks are provided in Section 7.

2 Learning Model Components

In this section we consider approaches that use implicit infor-
mation from a set of examples to obtain part of a combinato-
rial model, in particular a constraint or an objective function.
There are two main approaches to achieve this result: the first
(covered in Section 2.1) aims at extracting information using
the native constraint language of the solver; the second (in
Section 2.2) consists in embedding a fully-fledged Machine
Learning model in a combinatorial approach. As an extreme
case, in Section 2.3 we consider approaches where the ML
model makes up (almost) all of the combinatorial model.

2.1 Learning via a Native Constraint Language

Traditionally, combinatorial optimization models are born
from iterative interactions between a domain and an optimiza-
tion expert. Intuitively, ML could support modeling activities
by retaining the same process, but replacing the optimization
expert with a constraint acquisition algorithm, and the do-
main expert with an example generator. Formally, the ap-
proaches in this section aim at learning a model in the form:

min z = x0 (P1)

subject to: ⇡i(~x) 8i 2 I

~x 2 D~x

were ~x is the vector of problem variables and D~x their do-
main. The set I contains the indices of all problem con-
straints, represented here as predicates ⇡i(~x) that must hold in
any feasible solution. The x0 variable represents by conven-
tion the cost to be minimized, and is absent in pure constraint
satisfaction problems. Crucially, the predicates are defined
using the building blocks from the hosting approach (e.g.
global constraints in Constraint Programming, linear equal-
ities or inequalities in Mixed Integer Linear Programming):
what changes is just the way they are discovered.

The example generator may be a human, a collection of
data, or an existing automated system. In latter case, con-
straint acquisition can also be considered as a mean to ex-
plain in declarative terms the behavior of a procedural or sub-
symbolic decision support system. All approaches in this sec-
tion focus on learning constraints, rather than objective func-
tions: of course nothing prevents a constraint from represent-
ing the definition of the x0 variable (as done in P1).

This is the idea behind systems such as CONACQ [Bessiere
et al., 2017a] (in its various versions), QUACQ [Bessiere et
al., 2013], and model seeker [Beldiceanu and Simonis, 2012],
which build over the Constraint Programming paradigm, and
behind the method in [Lallouet et al., 2010], based on Induc-
tive Logic Programming. Both CONACQ and QUACQ oper-
ate by picking constraints from a set of potential (instanti-
ated) candidates (called a bias) and adding them to a target
constraint network. Model seeker attempts to match (possi-
bly) transformed subsets of variables in the training examples

against a collection of (non-instantiated) global constraints;
constraints that are compatible with all examples are added
to the current model, and a series of simplification steps at-
tempts to remove redundant relations. Since model seeker re-
lies does not need to consider explicitly all possible instantia-
tions in its candidate pool, it can usually deal with a large va-
riety of constraints. The downside is that finding a matching
becomes more complicated and requires the use of a heuristic
step. The method from [Lallouet et al., 2010] attempts in-
stead to learn local rules that are partially independent on the
specific values and variables appearing in the examples.

A first major design choice in all such approaches concerns
the use of passive or active learning. Methods based on pas-
sive learning (e.g. Model seeker, the original CONACQ, and
the one from [Lallouet et al., 2010]) operate on a fixed collec-
tion of examples. Conversely, approaches based active learn-
ing (e.g. QUACQ and CONACQ.2) generate candidate exam-
ples themselves and query the generator (which in this case is
instead a constraint checker) for their validity. Active learn-
ing enables convergence using a smaller number of examples,
but is not applicable when a constraint checker is not avail-
able (e.g. when working on collections of historical data).

Among the mentioned approaches, only model seeker can
work using just positive examples, which makes it well suited
to deal with historical data. The system can also be used to
obtain, based on a handful of examples, a candidate list of
global constraints for modeling the problem. CONACQ and
QUACQ employ both positive and negative examples (which
may be a disadvantage), but are capable of using negative ex-
amples to quickly rule out large sets of constraints from the
bias (which is a considerable advantage). QUACQ has the pe-
culiarity of relying on partial examples, where only some of
the problem variables are instantiated. This allows to speed
up convergence both from a theoretical and practical perspec-
tive, giving the algorithm its namesake (QUick ACQuisition).

Finally, the method from [Lallouet et al., 2010] learns a
model using an intermediate representation; this is loosely in-
spired by modeling languages such as AMPL, OPL or MiniZ-
inc, which make a clear distinction between the problem
structure and its parameters. Thanks to this design choice, the
approach is able to learn parameter-free models, and to gen-
eralize results obtained on smaller instances to larger ones.
The price to pay for this impressive feat is a more complex
formalism and a somewhat reduced expressivity.

2.2 Incorporating Machine Learning Models

Unlike the approaches described in Section 2.1, the methods
considered here attempt to incorporate a fully-fledged Ma-
chine Learning model within a combinatorial optimization
model. Formally, these works deal with problems in the form:

min z = x0 (P2)

subject to: ⇡i(~x) 8i 2 I

⌫m(~xm,in, ~xm,out) 8m 2 M

~x 2 D~x

where the ⇡i(~x) predicates represent constraints obtained in
a traditional fashion, while each ⌫m(~xm,in, ~xm,out) is a pred-
icate that: 1) corresponds to a Machine Learning model m

optimization, portfolio selection and algorithm configuration.
Due to space limitations, we do not discuss the (many and
interesting) techniques that explore the other direction of in-
tegration (i.e. optimization techniques to improve ML algo-
rithms). Concluding remarks are provided in Section 7.

2 Learning Model Components

In this section we consider approaches that use implicit infor-
mation from a set of examples to obtain part of a combinato-
rial model, in particular a constraint or an objective function.
There are two main approaches to achieve this result: the first
(covered in Section 2.1) aims at extracting information using
the native constraint language of the solver; the second (in
Section 2.2) consists in embedding a fully-fledged Machine
Learning model in a combinatorial approach. As an extreme
case, in Section 2.3 we consider approaches where the ML
model makes up (almost) all of the combinatorial model.

2.1 Learning via a Native Constraint Language

Traditionally, combinatorial optimization models are born
from iterative interactions between a domain and an optimiza-
tion expert. Intuitively, ML could support modeling activities
by retaining the same process, but replacing the optimization
expert with a constraint acquisition algorithm, and the do-
main expert with an example generator. Formally, the ap-
proaches in this section aim at learning a model in the form:

min z = x0 (P1)

subject to: ⇡i(~x) 8i 2 I

~x 2 D~x

were ~x is the vector of problem variables and D~x their do-
main. The set I contains the indices of all problem con-
straints, represented here as predicates ⇡i(~x) that must hold in
any feasible solution. The x0 variable represents by conven-
tion the cost to be minimized, and is absent in pure constraint
satisfaction problems. Crucially, the predicates are defined
using the building blocks from the hosting approach (e.g.
global constraints in Constraint Programming, linear equal-
ities or inequalities in Mixed Integer Linear Programming):
what changes is just the way they are discovered.

The example generator may be a human, a collection of
data, or an existing automated system. In latter case, con-
straint acquisition can also be considered as a mean to ex-
plain in declarative terms the behavior of a procedural or sub-
symbolic decision support system. All approaches in this sec-
tion focus on learning constraints, rather than objective func-
tions: of course nothing prevents a constraint from represent-
ing the definition of the x0 variable (as done in P1).

This is the idea behind systems such as CONACQ [Bessiere
et al., 2017a] (in its various versions), QUACQ [Bessiere et
al., 2013], and model seeker [Beldiceanu and Simonis, 2012],
which build over the Constraint Programming paradigm, and
behind the method in [Lallouet et al., 2010], based on Induc-
tive Logic Programming. Both CONACQ and QUACQ oper-
ate by picking constraints from a set of potential (instanti-
ated) candidates (called a bias) and adding them to a target
constraint network. Model seeker attempts to match (possi-
bly) transformed subsets of variables in the training examples

against a collection of (non-instantiated) global constraints;
constraints that are compatible with all examples are added
to the current model, and a series of simplification steps at-
tempts to remove redundant relations. Since model seeker re-
lies does not need to consider explicitly all possible instantia-
tions in its candidate pool, it can usually deal with a large va-
riety of constraints. The downside is that finding a matching
becomes more complicated and requires the use of a heuristic
step. The method from [Lallouet et al., 2010] attempts in-
stead to learn local rules that are partially independent on the
specific values and variables appearing in the examples.

A first major design choice in all such approaches concerns
the use of passive or active learning. Methods based on pas-
sive learning (e.g. Model seeker, the original CONACQ, and
the one from [Lallouet et al., 2010]) operate on a fixed collec-
tion of examples. Conversely, approaches based active learn-
ing (e.g. QUACQ and CONACQ.2) generate candidate exam-
ples themselves and query the generator (which in this case is
instead a constraint checker) for their validity. Active learn-
ing enables convergence using a smaller number of examples,
but is not applicable when a constraint checker is not avail-
able (e.g. when working on collections of historical data).

Among the mentioned approaches, only model seeker can
work using just positive examples, which makes it well suited
to deal with historical data. The system can also be used to
obtain, based on a handful of examples, a candidate list of
global constraints for modeling the problem. CONACQ and
QUACQ employ both positive and negative examples (which
may be a disadvantage), but are capable of using negative ex-
amples to quickly rule out large sets of constraints from the
bias (which is a considerable advantage). QUACQ has the pe-
culiarity of relying on partial examples, where only some of
the problem variables are instantiated. This allows to speed
up convergence both from a theoretical and practical perspec-
tive, giving the algorithm its namesake (QUick ACQuisition).

Finally, the method from [Lallouet et al., 2010] learns a
model using an intermediate representation; this is loosely in-
spired by modeling languages such as AMPL, OPL or MiniZ-
inc, which make a clear distinction between the problem
structure and its parameters. Thanks to this design choice, the
approach is able to learn parameter-free models, and to gen-
eralize results obtained on smaller instances to larger ones.
The price to pay for this impressive feat is a more complex
formalism and a somewhat reduced expressivity.

2.2 Incorporating Machine Learning Models

Unlike the approaches described in Section 2.1, the methods
considered here attempt to incorporate a fully-fledged Ma-
chine Learning model within a combinatorial optimization
model. Formally, these works deal with problems in the form:

min z = x0 (P2)

subject to: ⇡i(~x) 8i 2 I

⌫m(~xm,in, ~xm,out) 8m 2 M

~x 2 D~x

where the ⇡i(~x) predicates represent constraints obtained in
a traditional fashion, while each ⌫m(~xm,in, ~xm,out) is a pred-
icate that: 1) corresponds to a Machine Learning model m

from a set M ; and 2) is satisfied iff the value of the input and
output variables match the evaluation of the ML model, i.e.:

⌫m(~xm,in, ~xm,out) , ~xm,out = m(~xm,in)

The ML components (defining either constraints or the objec-
tive function) are integrated with the rest of the optimization
model in a seamless fashion. The emphasis is not on how the
ML models are obtained, but on methods for embedding them
efficiently and effectively into a combinatorial model. This is
the key idea in Empirical Model Learning [Lombardi et al.,
2017] and can be achieved by either expanding or exploiting
the constraint language. We will rely on this distinction to
group approaches in this section.

Embedding a ML model by expanding the language is a
natural solution in the Constraint Programming domain: it re-
quires to introduce a new modeling block (e.g. a new global
constraint) and to define an operational semantic (e.g. a prop-
agator). For example, [Lombardi et al., 2017] embed a pre-
trained Neural Network in CP by associating a “Neuron Con-
straint” to each network unit, and using interval-based rea-
soning to prune the input/output variables. The approach
is extended in [Lombardi and Gualandi, 2016] to two-layer
networks via a Lagrangian relaxation. A similar approach
is taken in [Lallouet and Legtchenko, 2007] and related ref-
erences by the same authors. In these works, however, the
starting point is a collection of examples that implicitly (and
approximately) define a constraint. Then, a set of ML classi-
fiers (either Neural Networks or Decision Trees) are learned
for checking the consistency of each variable-value pair. In-
terval based reasoning is then used to generalize the classi-
fiers so that they can work with unbound variables.

The second main method to embed a ML component in
a combinatorial model consists in encoding the ML model
using the native language offered by the optimization tech-
nology (e.g. linear constraints and integer variables in
Mixed Integer Linear Programming, or linear constraints
and boolean predicates in Satisfiability Modulo Linear Real
Arithmetic). This encoding is formally a decomposition of
the ⌫m(~xm,in, ~xm,out) predicates and should be not only cor-
rect, but also effective at supporting the solver at search time.

A simple encoding for Decision (and Regression) Trees in
CP and Satisfiability Modulo Theories (LRA in particular)
is proposed in [Lombardi et al., 2017], in the context of a
thermal-aware workload assignment problem: the encoding
is based on modeling each root-to-leaf path as an implica-
tion, with the addition of a few redundant constraints. A
wider range of CP encodings, based on Multi-Valued Deci-
sion Diagrams/TABLE constraints plus discretized numeric at-
tributes, is instead considered in [Bonfietti et al., 2015], and
benchmarked on the same target problem: these encodings
are more complex and computationally expensive, but they
also enforce a much stronger level of consistency.

A MILP encoding for Decision/Regression Trees (based
on associating a binary variable to each root-to-leaf path in
the tree) is described in [Verwer et al., 2017], and employed
within an auction optimization problem. The encoding uses
a small number of integer variable, which is effective at lim-
iting branching, but relies on big-Ms for the linearization of
disjunctions, weakening the Linear Programming relaxation.

CP encodings for Random Forests are briefly considered in
[Bonfietti et al., 2015], although with limited effectiveness.
A multi-step HVAC control problem which employs a Deep
Neural Network to model the state transition function is con-
sidered in [Say et al., 2017]: the authors focus on networks
based on REctifier Linear Units (ReLUs). For these they pro-
vide a MILP encoding strengthened 1) by simple redundant
constraints, and 2) by a pre-processing step that sparsifies the
network to boost the efficiency of the underlying solver.

2.3 ML Models as Problem Models

As an extreme case, we consider works where a ML model
(almost) entirely replaces a classical combinatorial optimiza-
tion model. This happens chiefly when optimization is used
for generating counterexamples or for safety verification, and
makes such approaches closer to the idea of using optimiza-
tion to support ML tasks. Formally, approaches in this group
deal with problems in the form:

min z = x0 (P3)

subject to: ⌫m(~xm,in, ~xm,out) 8m 2 M

~x 2 D~x

In practice, simple additional constraints on ~xm,in and ~xm,out

are usually supported. The main point, however, is that the
focus on a specific model structure (e.g. a Neural Network)
allows for tailored optimization techniques.

In this context, [Fischetti and Jo, 2018] model a ReLU
based Deep Neural Network using MILP and bound tight-
ening. Starting from a given (correctly classified) example,
the approach searches for a minimally-distant input perturba-
tion that invalidates the classification. The method is general,
but applied to image classification as a case study. The use of
bound tightening proved crucial for the method effectiveness.

In the SMT domain, [Huang et al., 2017] introduce an ap-
proach for generating counterexamples for image classifica-
tion tasks. The authors improve scalability and obtain more
meaningful results by replacing basic decisions (i.e. choosing
the color of each pixel) with image manipulation operators,
applied to an original (correctly classified) example. Con-
versely, [Katz et al., 2017] follow a more fundamental, and
low-level, approach by explicitly writing a theory solver for
Linear Real Arithmetic augmented with ReLUs. The solver
attempts to deal with each ReLU in the form y = max(0, x)
by updating x or y to satisfy the relation, and then proceed-
ing with the normal Simplex algorithm. Actual disjunctions
are introduced only when a maximum number of updates has
been performed on a given ReLU. The method exhibits very
good scalability and is successfully employed to verify prop-
erties of an unmanned aircraft control system.

3 Learning while Solving Problems

In this section we consider approaches that obtain an approx-
imate model via active learning while searching for an op-
timal solution. Promising candidate solutions are identified
and evaluated; then, based on the feedback, the internal model
is updated and the whole process repeated. Active learning
is also employed in constraint acquisition (e.g. QUACQ and
CONACQ.2): however, for the approaches in this section, the
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ML for Search

A. Lodi and G.Zarpellon On learning and Branching: a survey, TOP 2017



Search strategies

• In tree-based search strategies: two foundamental
steps 
- Variable selection: on which variable to branch
- Node selection: which value to assign to the variable 
Some work on ML applied to MIP to guide these choices

• Heuristic search strategies are more diverse
– Large neighborhood search
– Heuristic search



ML in MIP search

• In MIP the heuristics for selecting a variable is 
sometimes based on Strong Branching and variants
- ML can be used to approximate SB by means of supervised 

learning technique 
- Feature extraction to describe the branching variable
- A regressor is learned to predict the estimated SB value
- The regressor is used as a branching heuristics

• Features should be
– Size independent
– Invariant to changes within the instance
– Scale-independent (if parameter change)



ML in MIP search

• Experimented on MIPLIB
– 105 observations
– On MIPLIB the new search strategy imitates full Strong 

Branching-modest improvement 
• Learning within the same instance
• SB scores are only used to select the single best variable
• Learning to imitate the correct ranking of the candidate 

variables at each node
A. Marcos Alvarez, Q. Louveaux, L. Wehenkel “A machine learning_based approximation of strong 

branching” INFORMS J. of Computing 29(1), 2017 



Deep networks assisted heuristic tree search

A.Hottung, S.Tanaka, K.Tierney
Deep Learning Assisted Heuristic Tree Search for the Container Pre-marshalling Problem  

arXiv:1709.09972

• DLTS is an incomplete tree search in which decisions 
about which branches to explore and how to bound 
nodes are made by a DNN
– DFS, LDS, weighted Beem search
– Plus aggressive pruning

• The DNN is problem specific
• Two networks: 

– a policy network to make predictions on the best branch
– a value network to predict the cost of completing the solution



Deep networks assisted heuristic tree search

A.Hottung, S.Tanaka, K.Tierney
Deep Learning Assisted Heuristic Tree Search for the Container Pre-marshalling Problem  

arXiv:1709.09972

Figure 1: Overview of a typical policy DNN for DLTS.

and we use both types of DNNs in this work. The function f is trained o✏ine and then applied
during the tree search. We use a policy network to make predictions about which branch will be
best (classification DNN) and a value network to predict the cost of completing a solution for a node
in the search tree (regression DNN).

There are three main types of layers for a DNN: the input layer that accepts X and transmits
it into the network; an output layer that consolidates the information of the network into a set of
outputs; and hidden layers, which accept and re-transmit data through the network. The layers are
organized sequentially, starting with an input layer, followed by one or more hidden layers, ending
with the output layer.

Figure 1 shows an overview of the DNN within DLTS. The problem is first converted into a
form that can be accepted by the DNN and passed to the input layer. The connections within the
network can be modified by the network designer, but usually the networks are highly connected,
with each node being connected to a large number (or all) of the nodes in the following layer. For
DLTS, the output layer represents a branching decision. We thus use a softmax activation function
in the output layer to transform all of the outputs into values in [0, 1] such that they sum to 1. This
allows DLTS to use the output as a probability distribution over the available branches.

3.1.1 Training

Training for the DLTS policy and value networks works as follows. A set of representative instances
for a problem are split into a training and a validation set. The instances are solved using an exact
procedure, although a heuristic could be used if no exact algorithm is available. A DNN training set
is then created by examining each optimal (or near optimal) solution and extracting DNN training
examples.

The solution to a problem can be seen as a sequence of constructive steps that create a solu-
tion. We note that for some OR problems this is easier to model than for others, and DLTS is
geared towards those in which this way of viewing the problem is intuitive. Each DNN training
example consists of the partial solution as input to the DNN, along with any other problem-relevant
information. The DNN output is the next step in the construction of a solution.

Formally, consider a solution that consists of a sequence of n components c1, . . . , cn. The com-
ponents are sequentially added to an empty solution through a constructive process to create a valid
solution. The contribution to the objective function of all components must have the same sign
(i.e., all positive or all negative). Each partial solution j, consisting of components c1, . . . , cj , is
associated with a problem state sj . The state s0 is empty and represents a starting solution with no
components. For the policy network, defined over j � 1, a training example is defined as Xj := sj�1

and Yj := �j , where �j is a 0-1 vector with an entry for every component that can be appended

5

The output is a 
probability distribution 
over the available 
branches



ML in MIP search

• Instead of an off-line ML method, an online 
learning strategy could be employed
– Data generated on-the-fly within the search process itself
– Reliability: depending on the number of times a real SB score 

was computed for a given var one could deem the candidate 
reliable

– Drawback: not adapting over time (after all var are reliable)
– Perpetual version of the method

A. Marcos Alvarez, L. Wehenkel, Q. Louveaux “On-line learning of  strong branching approximation 
in Branch and Bound” Tech. Rep. Univ. Liege, 2016 



ML in MIP search
• Again on learning during search in MIP
• Two general branching strategies:

– Strong Branching (SB) : simulate branching on multiple 
variables; select var. with max product of LP increase large 
computation time , small number of nodes

– Pseudocost Branching (PC) : choose based on running averages 
of observed branching effect for each variable a lot of manual 
tuning , small time, reasonable number of nodes

• Can we get the best of both worlds (SB and PC)?
– small number of nodes
– small time
– as little manual tuning as possible

E. Kalil, P. Le Bodic, L. Dong, G. Nemhauser, B. Dilkina “Learning to branch in Mixed Integer 
Programming” in AAAI2016 



ML in MIP search
• Relaxed Binary Labels:

– yij = 1; if SB score of xj is within α of max SB score at Ni
– yij = 0; otherwise

where  α in (0,1) is small
• Goal: Learn a function of the features that ranks variables 

with better labels higher than other variables.

• Note that for data collection: run SB for some nodes, and 
use SB scores as labels for variables within each node; 
compute features describing each variable (dataset D)

• Also decide if run the primal heuristics or not.
E. Kalil, P. Le Bodic, L. Dong, G. Nemhauser, B. Dilkina “Learning to branch in Mixed Integer 

Programming” in AAAI2016 



ML in MIP search

• Reinforcement learning: 
– Within a node selection stage the tree is traversed from root to 

leaf (best first)
– Once the leaf is reached the tree is updated: computed for the 

leaf and propagated upward

– Score(N)= estimate(N) +     Γ [visits(P)/100]/visits(N)

A. Sabharwal, H. Samulowitz, H. Reddy, “ Guiding combinatorial optimization with UCT”. CPAIOR 2012

Measure of 
node quality

P: parent node
N: current nodeExploration/expl

oitation balance



ML in MIP search

• The essential part of the reward measure consists 
of LP objective values combined with visit counters

• Good tradeoff between exploration and 
exploitation. 



Design of heuristic algorithms on graphs

H. Dai, E. Khalil, Y. Zhang, B. Dilkina, L. Song, “Learning Combinatorial Optimization Algorithms over 
Graphs, NIPS 2017

• Research question: Given a graph optimization problem G and a 
distribution of problem instances, can we learn better heuristics that 
generalise to unseen instances? 

• Approach: 
– adopt a greedy meta-algorithm design
– Use a graph embedding network (deep network) to represent the 

policy in the greedy algorithm 
• The network featurizes nodes capturing their properties
• Parametrises the evaluation function 

– Q-learning to learn a greedy policy



Design of heuristic algorithms on graphs

H. Dai, E. Khalil, Y. Zhang, B. Dilkina, L. Song, “Learning Combinatorial Optimization Algorithms over 
Graphs, NIPS 2017

• To estimate the quality of the partial solution S’ resulting from 
adding a node to S, we use an evaluation function Q which is 
learned using a collection of problem instances

• Q is based on an estimation of the state S, adding node v and based 
on parameters Θ

• Parameters are tuned via a deep network 

activated when S = V . Empirically, inserting a node u in the partial tour at the position which
increases the tour length the least is a better choice. We adopt this insertion procedure as a helper
function for TSP.

An estimate of the quality of the solution resulting from adding a node to partial solution S will
be determined by the evaluation function Q, which will be learned using a collection of problem
instances. This is in contrast with traditional greedy algorithm design, where the evaluation function
Q is typically hand-crafted, and requires substantial problem-specific research and trial-and-error. In
the following, we will design a powerful deep learning parameterization for the evaluation function,
bQ(h(S), v;⇥), with parameters ⇥.

3 Representation: Graph Embedding
Since we are optimizing over a graph G, we expect that the evaluation function bQ should take into
account the current partial solution S as it maps to the graph. That is, xv = 1 for all nodes v 2 S,
and the nodes are connected according to the graph structure. Intuitively, bQ should summarize the
state of such a “tagged" graph G, and figure out the value of a new node if it is to be added in
the context of such a graph. Here, both the state of the graph and the context of a node v can be
very complex, hard to describe in closed form, and may depend on complicated statistics such as
global/local degree distribution, triangle counts, distance to tagged nodes, etc. In order to represent
such complex phenomena over combinatorial structures, we will leverage a deep learning architecture
over graphs, in particular the structure2vec of [9], to parameterize bQ(h(S), v;⇥).

3.1 Structure2Vec
We first provide an introduction to structure2vec. This graph embedding network will compute
a p-dimensional feature embedding µv for each node v 2 V , given the current partial solution S.
More specifically, structure2vec defines the network architecture recursively according to an
input graph structure G, and the computation graph of structure2vec is inspired by graphical
model inference algorithms, where node-specific tags or features xv are aggregated recursively
according to G’s graph topology. After a few steps of recursion, the network will produce a new
embedding for each node, taking into account both graph characteristics and long-range interactions
between these node features. One variant of the structure2vec architecture will initialize the
embedding µ

(0)
v at each node as 0, and for all v 2 V update the embeddings synchronously at each

iteration as

µ
(t+1)
v

 F

⇣
xv, {µ(t)

u
}u2N (v), {w(v, u)}u2N (v) ;⇥

⌘
, (2)

where N (v) is the set of neighbors of node v in graph G, and F is a generic nonlinear mapping such
as a neural network or kernel function.

Based on the update formula, one can see that the embedding update process is carried out based on
the graph topology. A new round of embedding sweeping across the nodes will start only after the
embedding update for all nodes from the previous round has finished. It is easy to see that the update
also defines a process where the node features xv are propagated to other nodes via the nonlinear
propagation function F . Furthermore, the more update iterations one carries out, the farther away
the node features will propagate and get aggregated nonlinearly at distant nodes. In the end, if one
terminates after T iterations, each node embedding µ

(T )
v will contain information about its T -hop

neighborhood as determined by graph topology, the involved node features and the propagation
function F . An illustration of two iterations of graph embedding can be found in Figure 1.

3.2 Parameterizing bQ(h(S), v;⇥)

We now discuss the parameterization of bQ(h(S), v;⇥) using the embeddings from
structure2vec. In particular, we design F to update a p-dimensional embedding µv as:

µ
(t+1)
v

 relu
�
✓1xv + ✓2

X
u2N (v)

µ
(t)
u

+ ✓3

X
u2N (v)

relu(✓4 w(v, u))
�
, (3)

where ✓1 2 Rp, ✓2, ✓3 2 Rp⇥p and ✓4 2 Rp are the model parameters, and relu is the rectified linear
unit (relu(z) = max(0, z)) applied elementwise to its input. The summation over neighbors is one
way of aggregating neighborhood information that is invariant to permutations over neighbors. For
simplicity of exposition, xv here is a binary scalar as described earlier; it is straightforward to extend
xv to a vector representation by incorporating any additional useful node information. To make the
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Graph embedding

H. Dai, E. Khalil, Y. Zhang, B. Dilkina, L. Song, “Learning Combinatorial Optimization Algorithms over 
Graphs, NIPS 2017

• The graph embedding network provides a p-
dimensional feature embedding for each node, 
given the current partial solution S

• Updated at each node of the search tree
• After few steps of recursion the network will produce a 

new embedding for each node considering
– Node characteristics
– Long range interactions between node features

• Use node embedding to update the evaluation function 
Q of the partial solution



Graph embedding

H. Dai, E. Khalil, Y. Zhang, B. Dilkina, L. Song, “Learning Combinatorial Optimization Algorithms over 
Graphs, NIPS 2017



Q-learning

H. Dai, E. Khalil, Y. Zhang, B. Dilkina, L. Song, “Learning Combinatorial Optimization Algorithms over 
Graphs, NIPS 2017

• We would like to learn an evaluation function Q across 
a set of m graphs from distribution D (different size) 

• Reinforcement learning formulation 
– State: sequence of nodes
– Transition: tagging a node selected by the last action
– Action: an action is a node that is not part of the current 

state
– Rewards: r(S,v) is the change in the cost function after taking 

action v and transitioning to S’

– Policy: deterministic greedy policy 

nonlinear transformations more powerful, we can add some more layers of relu before we pool over
the neighboring embeddings µu.

Once the embedding for each node is computed after T iterations, we will use these embeddings
to define the bQ(h(S), v;⇥) function. More specifically, we will use the embedding µ

(T )
v for node

v and the pooled embedding over the entire graph,
P

u2V
µ
(T )
u , as the surrogates for v and h(S),

respectively, i.e.
bQ(h(S), v;⇥) = ✓

>
5 relu([✓6

X
u2V

µ
(T )
u

, ✓7 µ
(T )
v

]) (4)

where ✓5 2 R2p, ✓6, ✓7 2 Rp⇥p and [·, ·] is the concatenation operator. Since the embedding µ
(T )
u

is computed based on the parameters from the graph embedding network, bQ(h(S), v) will depend
on a collection of 7 parameters ⇥ = {✓i}7i=1. The number of iterations T for the graph embedding
computation is usually small, such as T = 4.

The parameters ⇥ will be learned. Previously, [9] required a ground truth label for every input
graph G in order to train the structure2vec architecture. There, the output of the embedding
is linked with a softmax-layer, so that the parameters can by trained end-to-end by minimizing the
cross-entropy loss. This approach is not applicable to our case due to the lack of training labels.
Instead, we train these parameters together end-to-end using reinforcement learning.

4 Training: Q-learning
We show how reinforcement learning is a natural framework for learning the evaluation function bQ.
The definition of the evaluation function bQ naturally lends itself to a reinforcement learning (RL)
formulation [36], and we will use bQ as a model for the state-value function in RL. We note that we
would like to learn a function bQ across a set of m graphs from distribution D, D = {Gi}mi=1, with
potentially different sizes. The advantage of the graph embedding parameterization in our previous
section is that we can deal with different graph instances and sizes seamlessly.

4.1 Reinforcement learning formulation
We define the states, actions and rewards in the reinforcement learning framework as follows:

1. States: a state S is a sequence of actions (nodes) on a graph G. Since we have already represented
nodes in the tagged graph with their embeddings, the state is a vector in p-dimensional space,P

v2V
µv. It is easy to see that this embedding representation of the state can be used across

different graphs. The terminal state bS will depend on the problem at hand;
2. Transition: transition is deterministic here, and corresponds to tagging the node v 2 G that was

selected as the last action with feature xv = 1;
3. Actions: an action v is a node of G that is not part of the current state S. Similarly, we will

represent actions as their corresponding p-dimensional node embedding µv , and such a definition
is applicable across graphs of various sizes;

4. Rewards: the reward function r(S, v) at state S is defined as the change in the cost function after
taking action v and transitioning to a new state S

0 := (S, v). That is,
r(S, v) = c(h(S0), G)� c(h(S), G), (5)

and c(h(;), G) = 0. As such, the cumulative reward R of a terminal state bS coincides exactly
with the objective function value of the bS, i.e. R(bS) =

P|bS|
i=1 r(Si, vi) is equal to c(h(bS), G);

5. Policy: based on bQ, a deterministic greedy policy ⇡(v|S) := argmax
v02S

bQ(h(S), v0) will be
used. Selecting action v corresponds to adding a node of G to the current partial solution, which
results in collecting a reward r(S, v).

Table 1 shows the instantiations of the reinforcement learning framework for the three optimization
problems considered herein. We let Q⇤ denote the optimal Q-function for each RL problem. Our graph
embedding parameterization bQ(h(S), v;⇥) from Section 3 will then be a function approximation
model for it, which will be learned via n-step Q-learning.

4.2 Learning algorithm
In order to perform end-to-end learning of the parameters in bQ(h(S), v;⇥), we use a combination
of n-step Q-learning [36] and fitted Q-iteration [33], as illustrated in Algorithm 1. We use the term
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nonlinear transformations more powerful, we can add some more layers of relu before we pool over
the neighboring embeddings µu.

Once the embedding for each node is computed after T iterations, we will use these embeddings
to define the bQ(h(S), v;⇥) function. More specifically, we will use the embedding µ
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is computed based on the parameters from the graph embedding network, bQ(h(S), v) will depend
on a collection of 7 parameters ⇥ = {✓i}7i=1. The number of iterations T for the graph embedding
computation is usually small, such as T = 4.

The parameters ⇥ will be learned. Previously, [9] required a ground truth label for every input
graph G in order to train the structure2vec architecture. There, the output of the embedding
is linked with a softmax-layer, so that the parameters can by trained end-to-end by minimizing the
cross-entropy loss. This approach is not applicable to our case due to the lack of training labels.
Instead, we train these parameters together end-to-end using reinforcement learning.

4 Training: Q-learning
We show how reinforcement learning is a natural framework for learning the evaluation function bQ.
The definition of the evaluation function bQ naturally lends itself to a reinforcement learning (RL)
formulation [36], and we will use bQ as a model for the state-value function in RL. We note that we
would like to learn a function bQ across a set of m graphs from distribution D, D = {Gi}mi=1, with
potentially different sizes. The advantage of the graph embedding parameterization in our previous
section is that we can deal with different graph instances and sizes seamlessly.

4.1 Reinforcement learning formulation
We define the states, actions and rewards in the reinforcement learning framework as follows:

1. States: a state S is a sequence of actions (nodes) on a graph G. Since we have already represented
nodes in the tagged graph with their embeddings, the state is a vector in p-dimensional space,P

v2V
µv. It is easy to see that this embedding representation of the state can be used across

different graphs. The terminal state bS will depend on the problem at hand;
2. Transition: transition is deterministic here, and corresponds to tagging the node v 2 G that was

selected as the last action with feature xv = 1;
3. Actions: an action v is a node of G that is not part of the current state S. Similarly, we will

represent actions as their corresponding p-dimensional node embedding µv , and such a definition
is applicable across graphs of various sizes;

4. Rewards: the reward function r(S, v) at state S is defined as the change in the cost function after
taking action v and transitioning to a new state S

0 := (S, v). That is,
r(S, v) = c(h(S0), G)� c(h(S), G), (5)

and c(h(;), G) = 0. As such, the cumulative reward R of a terminal state bS coincides exactly
with the objective function value of the bS, i.e. R(bS) =

P|bS|
i=1 r(Si, vi) is equal to c(h(bS), G);

5. Policy: based on bQ, a deterministic greedy policy ⇡(v|S) := argmax
v02S

bQ(h(S), v0) will be
used. Selecting action v corresponds to adding a node of G to the current partial solution, which
results in collecting a reward r(S, v).

Table 1 shows the instantiations of the reinforcement learning framework for the three optimization
problems considered herein. We let Q⇤ denote the optimal Q-function for each RL problem. Our graph
embedding parameterization bQ(h(S), v;⇥) from Section 3 will then be a function approximation
model for it, which will be learned via n-step Q-learning.

4.2 Learning algorithm
In order to perform end-to-end learning of the parameters in bQ(h(S), v;⇥), we use a combination
of n-step Q-learning [36] and fitted Q-iteration [33], as illustrated in Algorithm 1. We use the term

5



Q-learning

H. Dai, E. Khalil, Y. Zhang, B. Dilkina, L. Song, “Learning Combinatorial Optimization Algorithms over 
Graphs, NIPS 2017

• The update of the Q function is in general performed 
when a full solution has been built  (delayed reward)

• Updating it at every step too miopic
• Tradeoff: update after n steps

• Overall very interesting performances.
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ML for Portfolio Selection and 
Algorithm configuration

Material extracted by the presentation of Lars Kotthoff
at the ACP Summer School, Jackson, 05 June 2018 

Kotthoff, Lars. “Algorithm Selection for Combinatorial Search Problems: A Survey.” 
AI Magazine 35, no. 3 (2014): 48–60.



Algorithm selection

• Different algorithms have different performances on different 
problems 

• …..even on different instances of the same problem 

• often no clear winner among different approaches

we need an algorithm performance estimator
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Performance models

• Performance models of black-box processes

• also called surrogate models

• Replace expensive underlying process with cheap 
approximate model

• Build the approximation on the basis of real evalution via 
machine learning techniques 

• No knowledge about the underlying process



Algorithm selection
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Algorithm portfolios

• Instead of a single algorithm use several complementary 
algorithms

• Idea from Economics – minimize the risk by spreading it out 
across several securities

• For computational problems – minimize the risk of algorithm 
performing poorly

• Algorithm used in a loose sense (constraint solvers, search 
strategies, modeling choices, different propagation algos)



Algorithm portfolios

• Most approaches rely on machine learning 

• Train with representative data (training set) – performance for 
all algorithms in a portfolio 

• Evaluate performance on a test set (unseen instances)

• Need to balance easy/hard instances on both sets

• May need hundreds/thousands of instances



Algorithm selection ingredients

• Feature extraction

• Performance evaluator

• Prediction based selector/scheduler



–Syntactic features: analyse instance description
• Number of vars/constraints/clauses
• Ratios
• Graph properties (node degree, connectivity)

–Probing features: run algorithms for short time
• Number of nodes/propagation within time limit
• Estimated search space size

–Dynamic features: instance changes while algo
running  
• Number of constraint propagation
• Change in var domains 

Feature extraction



–Syntactic features: analyse instance description
• Number of vars/constraints/clauses
• Ratios
• Graph properties (node degree, connectivity)

–Probing features: run algorithms for short time
• Number of nodes/propagation within time limit
• Estimated search space size

–Dynamic features: instance changes while algo
running  
• Number of constraint propagation
• Change in var domains 

Feature extraction

Which features?
Mix of complex/simple features

In the end…..whatever works best



–Model for entire portfolios
• Predict the best algorithm in the portfolio 

(classification)
• Clustering and assign algorithms to clusters
• Important to assign a weight during learning 

(difference best-worst time) to focus on important 
instances

Performance evaluator

Gent, Ian P., Christopher A. Jefferson, Lars Kotthoff, Ian Miguel, Neil Moore, Peter Nightingale, and Karen E. Petrie. 
“Learning When to Use Lazy Learning in Constraint Solving.” In ECAI2010.

Kadioglu, Serdar, Yuri Malitsky, Meinolf Sellmann, and Kevin Tierney. “ISAC – Instance-Specific Algorithm 
Configuration.” In ECAI2010.



–Model for individual algorithms
• Predict the performance of each algorithm
• Compare predictions and chose the best

–Hybrid methods, e.g. pairwise comparisons

Performance evaluator

Xu, Lin, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. “SATzilla: Portfolio-Based Algorithm Selection 
for SAT.” J. Artif. Intell. Res. (JAIR) 32 (2008) 

Xu, Lin, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. “Hydra-MIP: Automated Algorithm 
Configuration and Selection for Mixed Integer Programming.” In RCRA@IJCAI11

Kotthoff, Lars. “Hybrid Regression-Classification Models for Algorithm Selection.” In 20th European 
Conference on Artificial Intelligence, 480–85, 2012. 



–Best algo
–N best algorithms ranked
–Allocation of resources to algorithms
–Change the current one?

Prediction selector

Kotthoff, Lars. “Ranking Algorithms by Performance.” In LION 8, 2014. 

Kadioglu, Serdar, Yuri Malitsky, Ashish Sabharwal, Horst Samulowitz, and Meinolf Sellmann. “Algorithm 
Selection and Scheduling.” In CP2011. 

Stergiou, Kostas. “Heuristics for Dynamically Adapting Propagation in Constraint Satisfaction Problems.” AI 
Commun. 22, no. 3 (2009): 125–41. 



–Given a set of problems, find the best algorithm 
parameter configuration

–Parameters:
• Anything you can change 

– search heuristic, variable ordering ….
• Some will affect performances

Algorithm configuration



Algorithm configuration
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Frank Hutter and Marius Lindauer, “Algorithm Configuration: A Hands on Tutorial”, AAAI 2016



• Evaluate small number of configurations 
• Build model of parameter-performance surface based on 

the results 
• Use model to predict where to evaluate next 
• Repeat 
• Allows targeted exploration of new configurations 
• Can take instance features into account like algorithm 

selection 
• Risk of overtuning (similar to overfitting)

Model based algorithm configuration

Xu, Lin, Holger H. Hoos, and Kevin Leyton-Brown. “Hydra: Automatically Configuring Algorithms for Portfolio-Based Selection.” 
In AAAI2010.



To wrap up



Thanks for listening!
Questions?



Alamo – Sahinidis et al.



Alamo – Sahinidis et al. adaptive sampling


